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Abstract

We consider an extension of model-based clustering to the semi-supervised case,
where some of the data are pre-labeled. We provide a derivation of the Bayesian
Information Criterion (BIC) approximation to the Bayes factor in this setting. We
then use the BIC to the select number of clusters and the variables useful for clus-
tering. We discuss some considerations for O(1) terms in information criteria when
performing model-based clustering.

Next, we explore a novel method for the initialization of the EM algorithm for
the semi-supervised case using modifications to the k-means++ algorithm to account
for the labels. Then, we derive an improved theoretical bound on expected cost and
observe improved performance in simulated and real data examples. This analysis
provides theoretical justification for a typically linear time semi-supervised cluster-
ing algorithm. We show how this algorithms outperforms related semi-supervised
k-means-style algorithms on several datasets.

Finally, we demonstrate semi-supervised model based clustering with our improved

k-means++ initialization on two applications. First, we identify behaviotypes in a fly
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larva dataset. Next, we nominate interesting vertices in graphs using two types of

supervision.
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Chapter 1

Introduction

Don’t worry if your job is small and
your rewards are few. Remember
that the mighty oak was once a nut

like you.

Unknown

Clustering is the art of partitioning data into distinct and scientifically relevant
classes by assigning labels to observations. Clustering is typically performed in an
unsupervised setting, where none of the observed data initially have labels. There are
a myriad of applications for clustering. Clustering is often performed in exploratory
data analysis. For example, one particularly romantic graduate student clustered
women on the popular online dating website OKCupid. [43] By finding groups of

women, he posited that he could craft a targeted dating profile in order to succeed in
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the exploitation task of finding true love.

In semi-supervised learning, some of the data have labels, but others do not; the
goal is typically to classify the unlabeled data by assigning them to the same classes
as the labeled data. For instance, Murphy et al. [41] verified the authenticity of
extra virgin olive oil by a spectral analysis of the oil followed by semi-supervised
classification.

When the goal is instead to group the data, there is semi-supervised clustering.
This task may be further complicated by the fact that the total number of classes may
be unknown. Just as in semi-supervised learning, leveraging the known labels allows
for a more informed clustering. There are many real-life examples of applications of
semi-supervised clustering. For instance, Basu et al. [9] use their semi-supervised
clustering algorithms to detect newsgroups from raw messages. In Chapter 4, we
detect flower species from measurements and terrain type from hyper-spectral im-
ages. In Chapter 5, we identify biological behaviotypes of lobotomized maggots from
data derived from time series of their actions and also produce a nomination list of
interesting vertices in a graph.

We will now introduce these topics more formally and explain their relatedness.
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1.1 Supervised Learning (Classification)

Suppose that we observe labeled data
(X1, Y1), (X9, Ya), ..., (Xa, Yo),

where X; represents some object living in X (typically RY) and Y; is the label of the
object living in Y (typically ¥ C Z). In classification, we use the data to learn a
classification rule, or a mapping

g: & =)

[16, 29] We can separate the two main branches of classification algorithms by ob-
serving that P(X,Y) = P(X|Y)P(Y) = P(Y|X)P(X).

The first branch, discriminative algorithms, directly estimates the classification
rule g, often by focusing on learning P(Y|X). Examples of discriminative algorithms
include support vector machines (SVN), logistic regression, and k-nearest neighbors.

The second branch, generative algorithms, seek to model the distribution of
the conditional data and the classes together (i.e. learn both P(X|Y) and P(Y)).
Then, given this learned distribution, predict the y that would be most likely for
the given instance z. Examples of generative algorithms are k-means, Gaussian
Mixture Modeling (GMM), and Naive Bayes. When comparing discriminative and

generative algorithms, there is an often cited principle attributed to Vapnik, which
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roughly states that one should never do anything more complicated than you have to
in order to solve your problem. This is the crux of why some prefer discriminative
to generative algorithms, although generative algorithms can incorporate unlabeled
data and benefit from some natural ways to answer some challenging (and important)

questions, like how many clusters are there.

1.2 Unsupervised Learning (Clustering)

In the unsupervised learning paradigm, we have data X;, X,,..., X, € A and we
wish to group the data into meaningful categories, or clusters. Here, meaningful is
somewhat vague, but generally a desirable cluster would have strong scientific signifi-
cance. For instance, consider a clustering of patients with similar physiological traits
where one cluster of patients responds very well to a treatment. Such a clustering
may give rise to further study of those traits and how they are related to (or perhaps
even cause) the positive treatment outcome. This is the most optimistic outcome of
clustering.

Typically clustering in toy examples have “obvious” categories, such as species of
Iris flower [19], and thus it is readily apparent how good a clustering is by comparing
the partitioning to the true (and known) partition. In this way, we can view clustering
as classification with unlabeled data. However, when the number of groups is unknown

(and therefore must be estimated), such a correspondence is not so simple. Figure 1.1
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represents a clustering problem, where the examples are colored and shaped according
to their true (and unknown!) cluster, where cluster corresponds to which distribution
the point was drawn from. The problem at hand would then be to partition the

clusters into 1 or more groups, with the hope of recovering some meaningful clusters.

I
|'||| I|||I |
- | U

- | |I|I' |I'{i'“ ilI:'|||I'| -

X.2]
2

A1

Figure 1.1: An example of a clustering problem. Colors represent the true clusters.

There are many strategies for clustering. Some of these are based on heuristics
like “clusters are formed by similar objects,” where similar might mean having small
pairwise object distance. Others are model-based and use a learned generative distri-
bution to model the data. Model-based methods allow for somewhat straightforward

5
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incorporation of supervision type constraints (cf. Section 3.1).

1.3 Semi-supervised Learning

Semi-supervised learning problems have data with labels:

(X7, ¥7), (X, ), .. (X, YD,

n* T n

without labels:

u pid £y
v XE X

m?

and/or data with hard or soft constraints such as X;, and X;, must be (must not be) in
the same cluster. The constraints are more general than labeled data, since particular
pairwise constraints can transmit identical information as labels. Generally, when we
refer to semi-supervised problems, we will use only the first two types of data. That
iz, we will only allow the data to be labeled and unlabeled, with no additional pairwise

constraints.

1.4 Semi-supervised Clustering

Semi-supervised clustering is a semi-supervised learning problem where there are
labeled and unlabeled data and the full set ) is probably unknown and there are
possibly no exemplars for some of the groups. Figure 1.2 depicts a clustering problem,

6
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where there are 40 points in R?, fifteen of which have labels already, as represented
by the circle shape instead of the star. Note that one of the clusters (denoted by

the color), has no labeled points-it is all stars. This is typical of semi-supervised

clustering.

2 * Hp
2 * *
w | * ¥

N o *

2 oS |

Lot
I X
i * 3 l |
w | ?Ie | *
_Iz —I1 [II ‘:

A1

Figure 1.2: An example of a semi-supervised clustering problem. Colors represent
the true clusters. Symbol represents unlabeled (star) or labeled (circle).



Chapter 2

Literature Review: Clustering

Learn from the mistakes of others.

You can never live long enough to

make them all yourself.

Groucho Marx

Some of this chapter appears in the introductions in [58, 59].

There are a wealth of strategies for solving learning problems. Due to the related
nature of clustering and semi-supervised clustering, we first expound on some selected
strategies for clustering, then detail the modifications involved for the semi-supervised

case either in this or subsequent chapters.
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2.1 Hierarchical

Hierarchical clustering strategies focus on building a dendrogram that can be cut
at a specific level to produce a desired number of clusters. Clusters are built on top of
the previous level’s by either dividing (divisive hierarchical clustering) or combining
clusters (agglomerative hierarchical clustering) using an optimization of an objective
function. Hierarchical clustering has several pros: it can produce any desired number
of clusters (between 1 and n, where n is the total number of points to be clustered);
it is relatively simple to explain; and it is easy to implement (naively). Its main con
is that it’s slow. Most implementations are @(n®) and “efficient” versions are still
O(n?). Thus, it is not well suited for big data.

The key difference between different hierarchical clustering methods is the choice
of objective function as the clustering criterion. Let X C R? be the data. Suppose
A and B are two clusters (consisting of elements of &X') at the current level. Often,
we choose a distance function d : B? x R? — R* acting on pairs of points. Some

selected distance functions are

1

1. L, distance: d(z,y) = ||z — yl|, = (Z:Ll{x,- — y,-]"");fur p > 1 (particularly L,

or Euclidean distance)

2. Ellipsoidal or Mahalanobis distance: d(z,y) = {(x — 1), A~} (z —v)) for positive

definite matrix A

We still need to define the distance function g : 2% x 2¥ — R* between A and

9
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B, sets of points, since merging (dividing) clusters is based on the optimization over
pairs of points. Generally, this is done by involving d on pairs of points in the two

clusters. Some selected examples of distance functions between sets of points are

1. Maximum linkage: g(A, B) = maxX,c4 ez d(T,¥)

2. Minimum linkage: g(A, B) = min,cq yepd(z,v)

3. Average linkage: g(A, B) = mzzeﬁ.yeﬂ d(z,v)

4. Likelihood based where (a) mixture models are posited for the data (b) g(A, B)
is the change in overall (maximized) likelihood if a merge were to occur (cf. [23]

for more details)

Once a distance function is defined, the hierarchical clustering generally starts
with n or 1 clusters for agglomerative or divisive algorithms, respectively. Then,
over n rounds, a single merge or split is performed based on what would be opti-
mal according to the distance function applied to all current clusters. See Algorithm
1 for pseudocode of an agglomerative hierarchical scheme. That particular pseu-
docode is too general to incorporate some standard shorteuts that apply to particular
link /distance functions. Figure 2.1 depicts a hierarchical clustering of US Arrests
data by state from the USArrests dataset included in R. [38] This data is given as

the number of arrests per 10° individuals for 3 violent crimes and population.

10
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Cluster Dendrogram
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Dendrogram of agglomerative hierarchical clustering applied to US

Figure 2.1:

Arrest data using the maximum linkage with Euclidean distance objective.
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Algorithm 1: Agplomerative Hierarchical Clustering
Input: X (n datapoints)
g : 2% x 2¥ — R* (cluster distance function)
k (desired number of clusters)
Output: £: X — {1,2,...,k} (cluster assignment mapping)
Define A; = {z: {(xr) =i} for i = 1,2,...,n be the current clusters.
Let K ={1,2,...n} be the labels of the current clusters.
Define ¢(x;) =ifori=1,2,...,n.
repeat
Let (*,5%) = argmin, ;. with ;; 9(4s, Aj).
Merge clusters A+ and A;». Remove j* from K.
until card(K) = k
Relabel all clusters so that if K = {a1,as,...,a¢}, Aﬂj becomes A;.
Update £(z) = j for each z € A; for j € K.
return ¢

=T - T =

[y
=]

2.1.1 Semi-supervised Hierarchical Clustering

One of the main difficulties in semi-supervised learning is incorporating the su-
pervision information. Several authors have noted that the general must link and
cannot link pairwise constraints are not appropriate for hierarchical clustering due
to the multiple levels of clustering (see, for example, [60, 7]). Namely, how can any
pairs have a must-link constraint when all clusters are initially size 17 Zheng and Li
modified the constraints allowed to “must link before” and using a modified pairwise
distance matrix using an uberdistance that distorts the original pairwise distances to
take into account the constraints. Due to fact that these modifications are necessary
for semi-supervised hierarchical clustering to be implemented, we prefer to use other

semi-supervised methods.

12
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2.2 Parametric

2.2.1 Model Based Clustering

Some clustering procedures are based on heuristics that lack a principled justifi-
cation, and many of the basic questions of clustering (e.g., how many classes there
are) are often left to the intuition of the practitioner. Fraley and Raftery [24] review
model-based clustering, which recasts the task of clustering as a model selection prob-
lem, which is well-studied in the field of statistics. The main assumption in model-
based clustering is that the data are drawn from one of (& distributions, where each
distribution represents a cluster. Model selection can be accomplished by computing
approximate Bayes factors for competing models with different numbers and/or types
of components.

Formally, assume that the data X, Xs, ..., X, are distributed i.i.d. according to

a mixture model,

G
fo(-) =Y mfa(-),
=1

where 8, are the parameters of the k** component of the mixture and G is the total
number of components. It can be shown that this is equivalent to the following

generative process: for each i € {1,2,...,n}
(1) draw Z; from multinomial (7, mg,...,Tg)

(2) draw X; from fgzi.

13
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If we consider each of the G components as representing a single cluster, then the
problem of clustering the data is that of unveiling each latent Z; from the generative
process. The expectation-maximization (EM) algorithm can be used to find the
maximum likelihood estimates for the parameters of the model and the posterior
probabilities of cluster membership for each X; (ef. [15]).

With this formulation, we have a fully probabilistic clustering scheme. We can

set the cluster of the i*" observation to the maximum a posteriori estimate:

Z; = argmax,m, fi.(z;).

Note that the posterior probability can give us a measure of confidence about the i
classification.

Here, we have used fy, as a general density function, but it should be noted that
the multivariate Gaussian distribution is the most common choice of distribution.
We will eventually use an information criterion, such as the Bayesian Information
Criterion (BIC), to assess the relative quality of different clusterings. Then, the
number of clusters can be chosen using the BIC, which rewards model fit and penalizes
model complexity.

Figure 2.2 depicts the model based clustering of the famous Old Faithful dataset.
[2] We have 272 observations on 2 variables: eruption duration and waiting time until

the next eruption. We use Mclust, [25] an R implementation of Gaussian Mixture

14
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Classification

o
=
= .
(]
= O
oy

I I I I I
3.0 35 40 45 5.0
eruptions

Figure 2.2: Model based clustering of the Old Faithful dataset. Colors/shapes
represent cluster assignments. Black ellipsoids represent orientations of the two com-
ponents in the final model.

Modeling (GMM) (model based clustering using Gaussian components), to cluster
the observations by allowing it to consider between 2 and 5 components with dif-
ferent covariance parameterizations allowed (VIL, VVI, and VVV, cf. Table 2.1 for
descriptions). Note that it selects two components, which matches with the intuitive
“by eyve” clustering.

By considering different constraints to the covariance matrices in the Gaussian
components, we can reduce the number of parameters estimated, thus lowering the

influence of the penalty term in the BIC. This allows for simpler clusters to be chosen

15
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over complex clusters. Celeux and Govaert [13] consider a spectral decomposition of

the k*® component’s covariance matrix,

%y = M DT ADy,

where A, represents the largest eigenvalue, Ap is a diagonal matrix whose largest
entry is 1, and D is a matrix of the corresponding eigenvectors. The interpretation
of each term as it relates to cluster k is as follows: A; represents the volume, D} the
orientation, and A, the shape. By forcing one or more of these terms to be the same
across all clusters, we can reduce the number of parameters to be estimated from
Gd + G4 in the unconstrained case (£ = A DT A, D) to Gd+ G — 1+ 24 i
the most constrained case (X = ADT AD). We can also force additional constraints,
such )y = [ and/or A; = I, leading to the simplest model: ¥; = Al with only
G(d + 1) parameters to estimate.

Meclust breaks down different choices of the constraints on the covariance matrices
using short (< 3) letter descriptions (cf. Table 2.1). Multivariate parameterizations
receive their by the concatenation of 3 letters. Position 1 indicates either (E)qual
or (V)arying volume (i.e. A;). Position 2 indicates (I)dentity, (E)qual, or (V)arying
shape (i.e. A;). Position 3 indicates (I)dentity, (E)qual, or (V)arying orientation (i.e.
Dy). Univariate parameterizations do not have shape or orientation, and thus only

are named by one letter.

16
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Name Applicable To X, Volume Shape Orientation
E R A Equal NA NA
V R Ak Varying NA NA
X RG=1 A NA NA NA
EII R AJ Equal Equal, spherical Coordinate axes
VII R Apd Varying Equal, spherical Coordinate axes
EEI Rd AA Equal Equal, ellipsoidal Coordinate axes
VEI Rd ApA Varying Equal, ellipsoidal Coordinate axes
EVI Rd AAL Equal Varying, ellipsoidal Coordinate axes
VvVl Rd ApAgL Varying Varying, ellipsoidal Coordinate axes
EEE R¢ ADTAD Equal Equal, ellipsoidal Equal
EVE R4 ADT ALD Equal Varying, ellipsoidal Equal
VEE Rd MDTAD  Varying Equal, ellipsoidal ~ Equal
VVE Rd MDTALD  Varying Varying, ellipsoidal Equal
EEV Rd ADIAD,  Equal  Equal, ellipsoidal  Varying
VEV Rd MDIAD,  Varying Equal, ellipsoidal ~ Varying
EVV Rd ADIAD,.  Equal  Varying, ellipsoidal Varying
VvV Rd MDIAD,.  Varying Varying, ellipsoidal Varying
XI1 Ri,G =1 AJ NA Spherical Coordinate Axes
XXI RiG=1 AA NA Ellipsoidal Coordinate Axes
XXX Ri,G=1 ADTAD NA Ellipsoidal NA

Table 2.1: Mclust covariance parameterizations. Let J be the identity matrix.

Expanded from Table 1 in [46].

2.2.1.1 DModel Selection in Model Based Clustering

Bayesian model selection can be accomplished through Bayes Factors, or ratios

of posterior probabilities of the data.

Suppose that there are two models under

competition for selection, say M; and M,. The Bayes Factor comparing M, to M, is

_ P(D|M,)P(M)
42 = P(D|M2)P(My)’

17
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where P(D|M;) is the posterior likelihood of the data under model M; and P(M;)
is the prior probability of M. After calculating the Bayes Factor comparing M; to
M, one would choose M if Bys > 1 and M, otherwise.

The BIC for a model under consideration (indexed by the form of ¥, and &) is
defined as

BlICy =206 — dy IUE{H):

where Ly is the maximized log-likelihood under model M, dj is the number of
parameters estimated, and n is the number of points used to estimate those parame-
ters. Heuristically, the BIC rewards model fit with the first term and penalizes model
complexity with the second term. Higher values are preferred.

It can be shown that the BIC = 2log(P(D|M)) (cf. Section 3.2 for a related
derivation). Thus, under a flat prior over all models, BIC};, — BIC,g, = 0 if and only
if By > 1. Hence, calculating the BIC for all models and choosing the argmax gives
the same results as computing pairwise Bayes Factors (under a flat prior). Therefore,
decisions between different parameterizations of ¥ and number of components G can

be made on the basis of the BIC approximation to the log of the posterior likelihood.

18
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2.2.2 Simultaneous Clustering and Variable Selec-

tion

Much of the recent work in model-based clustering has centered on variable selec-
tion. Raftery and Dean [46] proposed a greedy algorithm for model-based clustering
in the unsupervised setting; it used the BIC to choose the number of clusters and
the features to consider while clustering by proposing linear relationships between
variables that influence clustering and those independent of clustering. Murphy et al.
[41] adapted Raftery and Dean’s algorithm to semi-supervised learning. Maugis et al.
[36, 35] consider many more scenarios of dependency structures between the cluster-
ing variables and the remaining variables than in [46]. Taking a different approach,
Witten et al. [56] offer a framework for variable selection in clustering using sparse
k-means or sparse hierarchical algorithms by modifying the corresponding objective
function to include penalty constraints. In their simulations, they outperform the

methods of [46] considerably.

2.2.3 K-Means

K-means [22, 33| is one of the most widely known clustering algorithms. The basic
problem it solves is as follows: for a fixed natural number k and dataset X C R9,

return a set of centers C' = {¢; € B : i = 1,2,...k} such that it is the solution to

19
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the k-means problem.

C = argming , pa g t, 14—k Pa(X); (2.1)

where ¢4(X) =3,y mineea ||z — ¢||>. Then, using this set of centers, return one of

k labels for each datum:

f(z) = argrﬂhlie{l,ﬂ,...,k]ux — &l

Lloyd’s algorithm [31] is a particularly long-lived strategy for locally solving the
k-means problem (ef. Algorithm 2); it suggests randomly selecting a subset of size
k from X as initial centers, then alternating updates to cluster assignments and
new centers. Lloyd’s algorithm does not have an approximation guarantee. Such a

guarantee, if it existed, would have the following form:

E[¢(X)] < agopr(X),

where ¢opr is the optimal value of ¢ corresponding to exactly solving the k-means
problem. If o was constant, then this would be an O(1) approximation bound.
Bounds of other orders, such as those scaling with k& would have an o that depended
on k. Because Lloyd’s algorithm does not have such an approximation bound, we

have that for certain datasets, it can return centers that result in a large value of
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the objective function in equation (2.1) with high probability. Thus, even running
independent copies of the algorithm and choosing the best result could yield poor
results.

Macqueen [33] conjectures that exactly solving equation (2.1) is difficult. He is
correct; Mahajan et al. [34] show that even for two dimensional data, k-means is NP-
hard. Because of this, practitioners instead seek to approximately solve the k-means
problem. Arthur and Vassilvitskii [5] present k-means++, a randomized O(log(k))
approximation algorithm running in @(kn) time (for their initialization step, which
is all that is required for the approximation bound) that works by modifying Lloyd’s
algorithm to choose initial centers with unequal weighting (cf. Algorithm 2). Their
results are remarkable because the algorithm runs in a practical amount of time.
This work inspired others to propose alternative randomized initializations for Lloyd's
algorithm for streaming data [4], parallel implementations [8], and bi-approximations
with extra (> k) centers that can then be re-clustered to yield k centers. 3, 4]

K-means is included as a parametric algorithm due to its relationship to model
based clustering with spherical equally oriented gaussians. That is, suppose that a
set of k centers C is already chosen. Then, for A = 0, consider the mixture model with
X, "% f(z) = LS fylzmieg, AI), where I is the identity matrix and f,(;c,, AJ)
is the multivariate normal pdf with mean ¢, and covariance AI. In this case, any
new point r € A will be assigned by K-means to the closest center (as determined

by Euclidean distance). By GMM, it will also be assigned to the closest center by
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Mahalanobis distance, which for equal and spherical covariance matrices, corresponds
to the Euclidean distance. Thus, the algorithms have the same decision boundary.
Also, Lloyd’s algorithm updates will be akin to E-M updates with hard assignments
(instead of soft assignments as in typical GMM). Thus, the movement of the centers

will be similar in both algorithms.

Algorithm 2: Lloyd’s k-means algorithm
Input: X (n datapoints)
C (k initial centers)

Output: C (updated centers)
repeat

Assign each x; € A to the nearest center c(x;) € C.

Update each c¢; € A as the centroid of the points z € A such that ¢(z) = ¢;.
until C has not changed
return C

M B W ke =

Algorithm 3: Initialization of centers for k-means++
Input: & (n datapoints)
k (number of centers)
Output: C (set of initial centers)
Choose an z € A uniformly at random.
Let C = {z}.
while card(C) < k do
Choose a datapoint z € X with probability proportional to D?(x).
Update C =CU {z}.

return C

M B W ke =

[==]

2.2.3.1 Previous Works on Semi-supervised K-means

In semi-supervised learning, there is additional information available about the

true labels of some of the data. These typically take the form of label information
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(e.g. £(x1) = 2) or pair-wise constrains (e.g. {(x1) = £(z2) or £(z1) # £(x2)). In recent
years, there has been a fair amount of interest in solving problems with these addi-
tional constraints. Wagstaff et al. [54] propose the COP-KMeans algorithm, which uses
a modified assignment step in Lloyd’s algorithm to avoid making cluster assignments
that would be in violation of the constraints. Basu et al. [9] focused on using label
information in their Seeded-KMeans and Constrained-KMeans algorithms. Both al-
gorithms use the centroids of the labeled points as initial starting centers. Basu et al.
[10] use the Expectation-Maximization (EM) algorithm [15] as a modified Llyod’s
algorithm to modify the pairwise supervision algorithms to include a step wherein the
distance measure is modified (so that they do not necessarily use Euclidean distance).

Finley and Joachims [18] learn pairwise similarities to account for semi-supervision.
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Chapter 3

Model Selection and

Semi-supervised Clustering

It is better to be right than to be

rigorous.

Andrey Kolmogorov

Much of this chapter appears in [58].

We will formulate a model encompassing the semi-supervised case, derive a BIC
approximation to the posterior loglikelihood under this model, then apply our result
to the special case of semi-supervised clustering. The modified BIC then represents
a principled measure by which to choose the number of clusters and the variables for
clustering when performing semi-supervised clustering. Next, we will consider some

aspects of O(1) differences in information criteria for model selection in model-based
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semi-supervised clustering in theory and for specific examples.

3.1 Model encompassing the semi-supervised

case

Consider n = ZG , ; independent random variables

i.Ld.
Xil}:Xi!El}: s :X;-E.i} ~ fﬂn

2 2 iid.
Xi :I: EE}::X;E} ™~ fﬂn:

Lid.
XIEC:I:XEEG}: cen :X,igj ~ fﬂc:

where #; € ©; C R% are the parameters for the group of unsupervised data. The
other rows of supervised data are drawn using distributions whose parameters are in

restricted (from ©;) spaces; formally, 8; € ©; C ©; for j = 2,3,...C. Finally,

{fﬁ:fﬂz: teey fﬂc} EM= {{fﬂ!i}: fﬂ‘{?)'.- e :fﬂ(c}} 0= {HI:I:I: . 19{6}] = BIXBEX' ' 'XBC}'

Collect all of the X's into set D.
Model M, while more general than strictly necessary, encompasses the semi-

supervised case. Consider the first group of n; random wvariables as those for which
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we do not have labels and each of the other ¢' — 1 groups as those whose labels we

know. Then, for a proposed total number of clusters G = €' — 1, we assume
G
fou () = Z T30(T; 1y» Lig),
=1

where ¢(-; pt;, X;) is a multivariate normal pdf with mean p; and covariance matrix

¥;, and E?=1 m; = 1. Also, for each k € {2,3,...,C},
.fgk {m) = [J{J{x; .l'-ﬂj;,:a Ej*)!l
where the double subscript ji is to account for possible relabeling. It follows that

01 = ((m1,m2, ..., Ta), (1, pa, - . ., pa), (X1, Lo, ..., X)) € Oy,

where

o
6y = {{(my, ma,...,7mg) : Z m=1me [l}’ ]_]]- x RI=E o {(£1,%0,...,Zg)|E = 0,5, € Rdxd}.

i=1

Then, for each k € {2,3,...,C}, 6, is the same as O, except that the mixing
coefficients (7, s, ..., 7s) are constrained such that m; = 1 and all other m; = 0.
With this model, we can derive the Expectation step (E-step) and Maximization

(M-step) of the EM algorithm. Note that semi-supervised EM is not new; indeed, sim-
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ilar calculations can be found in [37] Section 2.19 and [48]. We include our derivation
of the E-step and M-step for our model below for consistent notation and complete-
ness.

E-Step for semi-supervised clustering.
Let Z;; = 1{X; is in cluster k} denote the (hidden) cluster memberships, where 1{.}

is the indicator function. Let Z; = ¥;, where £; is cluster that X; is a member of. The

likelihood of the complete data (X, Z) is

L(g) = Hf{Xi:Zi)

i=1

= HP(Zi = b)f(XilZ: = &)
i=1

= [ meto, (X0
i=1

=TI (mefo, (x0) ™

i=1
n o

= TITI fo (X5) %%,

i=1 k=1

where the last step follows because only the £;th entry of Z; . is 1 (and the others are
0). Taking logs and substituting ¢(-; g, i) for each fp,, the complete log-likelihood

of the parameters given the data and labels is

n &
OID) =Y Y " Z;p log(md(Xi; i, Ta))-

i=1 k=1
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Note that for the n — n; data not in the first group, we know the true Z;;, but for

the n; unlabeled data we do not. Thus, the E-step of the EM algorithm is

ny o g
E[l(6, ZxID)] = 3 3 ElZul Dl log(md(Xii pu, BNHY Y 1og(6(Xi iy, 55).
1

i=1 k= k=2 i=np_1+1

By the definition of Z;; and Bayes Theorem, we have for all i = 1,2,...,ny that

Te@( X pe, )

E[Z; x|D] = P(Z;.. =1|D) = )
Zil (X i, Lg)

M-5Step for semi-supervised clustering.
Define p;p = E[Z; x| D]. We must maximize E[l(8, Z; x| D)] with respect to the mix-

ing coefficients m, the mean vectors pg, and the covariance matrices ¥ for k =

1,2,...,G. It can be shown that the update equations for m,. are
o P
M = i1 PR Lk .
i
Recalling that p; , = 1{X; is in cluster k} for i =n; +1,n,+2,...n, we can now use

the standard update equations for p; and ¥;. Specifically,

e = 1 PikXi
E?=1 Pi ke ’

the weighted average of the data with weights equal to the posterior probabilities of
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cluster membership. The exact equations for the update equations for ¥ varies based
on the parsimonious parameterization chosen (e.g. EEE, cf. Table 2.1). Celeux and

Gévert derive the closed and iterative forms for a variety of parameterizations in [13].

3.2 A Derivation of the BIC for the Semi-

supervised Model

Assume the data are distributed according to a member of model M described in
Section 3.1. In Section 2.2.1.1, we mentioned that the BIC approximates the posterior
loglikelihood under model some model M;: BIC = 2log(P(D|M;)). In this section,
we will justify a modified version of this equation for model M specifically. Consider

the integrated likelihood:

P(D) = f P(D|8, M)P(8| M )d#d, (3.1)
where P(-) is a probability, pmf, or pdf where appropriate. Let

Q(0) = log (P(D|6, M) P(8]M)) ,

the log of the posterior likelihood. Suppose that the posterior mode exists, say 8.
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A second order Taylor expansion about 8 gives
Q) = QO)+(0-0)"VQ(@) + %{9 —0)"V?Q(8)(8 - 8) + O(||(6 — §)|[3)-

By the first order optimality necessary conditions, we know VQ(#) = 0. By ignoring

the last term, we will approximate )(#) with the truncated Taylor expansion:
_ 1 — — —
Q) ~ Q(0) +5(0 — )TV?Q(8)(8 — ).
Recalling (3.1), we may approximate P(D|M) using a saddle point approximation:

P(DIM) = fexp (log(P(D|8, M)P(8|M))) df
= [ew@o)a
~ f exp (Q(é} ¥ %{9 —9)TV2Q(8)(0 - 5'!]) d6
= e (Q0) [exp (%w — 0y 2Q(B)(6 é)) 0
= e (Q0) [exp (—%w — 0" (—V2Q(@))(0 - é}) do.

Recognize the integral as proportional to the density of a multivariate Guassian with

mean # and covariance —V2Q(f). Let H = —V?Q(8).
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Then, we have

(2m)7 exp (Q(9))
det(H)z

P(DIM) = (3.2)

where d is number of free parameters in 6.

Now we will relate H to the Fisher information matrix as defined by

T(6) = E |35 0B(p(X, 0)) 55 0E(p(X. )|

Under the conditions' , Proposition 3.4.4. in [11] yields

1(0);6 = —Eq [ log P(X, a]] .

50,00,

Thus, if P(f|M) is uninformative, then H = —V?Q(f) = -1, Bf;ﬂ;, log P(X,8) =
]

!Conditions for Proposition 3.4.4 in [11]. Assume

1. 8 € O, for open © C RY,

2. {P(x,#) : 8 € B} 1= a regular parametric model,

3. P is twice continnously differentiable,

4. for any statistic T' such that Eg[|T'|] < oo for all # € ©, we have that

ﬁ‘% [f T{z)Piz, H‘:IE.I'I] = fT{I}%P{I, #ydz,
5. for any statistic T such that Eg[|T'|| < oc for all # £ 8, we have that

—32 a
56,00, [f T(z)P(z, H‘:IEII] = fT{I}mP(L g)dr,

and

6. the support of P(-,#) does not depend on 8.
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nl(#). H is often referred to as the observed Fisher information.

By consistency of the observed Fisher information matrix, if 6 is the Maximum
Likelihood Estimator (MLE), then H(f) = I(6,) + 0p(1), where I(fp) is the Fisher
information at the true generating parameters. When the posterior mode is nearly
or is equal to the MLE, as is the case when the prior on # is uniform and © is finite
(cf. Bickel and Doksum pp. 114), substitute ii the MLE, for 8, the posterior mode.

Taking 2log(-) of both sides, (3.2) becomes

2log(P(D|M)) =~ 2Q(6) + dlog(2r) + log(det(I(6)™"))

= 2log(P(D|6, M)) + 2log(P(8|M)) + dlog(2m) — log(det(I(8)).

Now, we must calculate — log(det(I(f)). Define n = Eil n;. Observe

I(§) = Var [% log(p(X, 9)}

=8
= Var Zﬁlog{p{Xi,H)]]

i=1

c
= Z n;I(#;) by independence.

i=1

Henceforth, we will use I, to denote I(f;). We will assume that Iy is positive definite,

so that it can be written as

I = ST,
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for some non-singular matrix 5;. Let J denote the d-dimensional identity matrix.
For notational purposes, let
*

T = Imax (mn;).
msx (n;)

Observe

[ .
det (Z n,-f(a,-]) = det (s’{ (nyJ + (ST)~" (Z n;I{E‘,-]) 3;1)31)
i=1 i=2
[
= det(I;)det (nlJ +nr (D)7 (Z %I(Ei)) 31—1)

i=2

. c
= det(I;)nddet (J + 2— (s7)~! (Z %1{9,.]) S;l)
. .

i=2

— det(I;)nddet (J + z—'B) ,
‘1

where B = (ST) - (X9, % [(8:))Sr'. A matrix C is a *—transform of another matrix
D if there exists a nonsingular matrix S such that C' = 5*DS (i.e. C is congruent to
D). Note that since S; is nonsingular, B is a *—transform of (Eiz ~+1(#:)). Then,
by Sylvester's Law of Inertia, B has the same inertia as Ef:z =i1(#;), which is a sum
of positive semi-definite matrices. Therefore, B is a positive semi-definite matrix.

Next, we would like to describe the growth of det (J + :—: ) For any eigenvalue

of J+ :;:B, say A, we have by Weyl's theorem

n*
1< A< 1+ —| B2
Tty
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Observe

B2 = max 1z’ Br
{zeR%:||z]|2=1}

c
< max ST2eT EJE'- T
{zeR%:||z]|2=1} 15712 (Z n*’

=2

o
1.
IS (E n—;nfj-u%)

=2

o
IS 2 (E ||I;.-||§) ?
j=2

[

[

which is independent of n. Let My = [IST'[3 (S5, IL13) - Let o(J + ZB) =
{A1, A2, ..., A4} be the spectrum of J + %B? ordered in decreasing magnitude and

counting multiplicities. Then, we have

det(J+B) = IE_,\,
1
1 . ,
< (1+—|[M2))
m

< (1 SRl (sz)d

Tty

Because d is fixed, the only term growing with n above is "';I“, the ratio of the
supervised data over the unsupervised data. In general, it is usually much more
expensive to obtain additional supervised data than unsupervised; thus, we find it

reasonable to posit that *=* — 0inn (i.e. is o(1)). In this case, log (detl[J+ :;:B})
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is o(1) by continuity and our bounds.

Hence,

log (det(I(#))) = log(det(I,))+ dlog(n,) + log (detl[J + :—:B)) (3.3)

= log(det(l1)) + dlog(ni) + o(1). (3.4)

When the posterior mode is nearly or is equal to the MLE, as is the case when
the prior on # is uniform and © is finite (cf. Bickel and Doksum pp. 114), substitute
ii the MLE, for 8, the posterior mode.

Recall that we had
2log(P(D|M)) = 2log(P(D|8, M)) + 2log(P(6|M)) + dlog(2r) — log(det(I(8)).

We can handle each term in the above approximation:
e 2log(P(#|M)) = O(1) by flat prior on 8
e dlog(2m) = O(1) because d is fixed
. log{det{fl[é}) = log (det(I,)) + dlog(n:) + o(1) by Equation 3.4

Finally, note that I; in is the Fisher information matrix for one datum from group 1
evaluated at the MLE. Suppose. 8, 3 were the true generating parameters of the data
in group 1. We would like to say that I; = Iy, ,. We know ijl —+ #1 5 in probability by
consistency of the MLE. Suppose P is thrice continuously differentiable with bounded
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third derivative. Since

log(P(z",8 = 6,4)) + 0p(1),

2
Lo =B [ loaPOto=00)| = -3 2

i=1
and P is thrice differentiable, the mean value theorem gives that there exists a #

between él and #4 g such that

—Z ~log(P(z",0 = alu]}—l gglﬂgip{m ).6=40y)

— Z @mgfp(z“?' 0=0)) (9“1 — Hl,u) :

i=1

If the third derivative is bounded in probability, we have that I} = I1(f10) + op(1).
Hence, log (det(I;)) = Op(1).

Therefore, 2log(P(D|M)) = 2log(P(D|6, M)) — dlog(n;) + op (1) + Op(1). Note
that the terms of order less than Op(1) get washed out in the limit as n — oo in the
sense that the other terms are diverging. If we drop them, we have our derivation of

the adjusted BIC.

Remark The choice to keep dlog(n;) around instead of dlog(n) is subtle. Suppose

we made the latter choice, noting that
T Ty
log(ny) = logfﬁﬂ} = lug{¥} +log(n) = o(1) + log(n).

Thus an approximation of this type only adds error that we apparently feel com-
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fortable dropping. Why do we not discount this error now? Note that the BIC is
used in finite sample situations; it will perform differently if the actual value for the
penalty term uses 1y vs. 1. The use of n; will lead to less parsimonious models. One
intuitive reason we would want to penalize less harshly than the BIC does is that the
complexity introduced by the largely constrained known datum should be lower than

an unconstrained point.

3.3 Discussion of Inclusion of O(1) Terms

in Information Criteria

The Bayesian Information Criterion (BIC) is generally denoted as
BIC = 2L — dlog(n),

where £ is the maximum of the likelihood, d is the number of parameters estimated,
and n is the number of data used to estimate those parameters.

Alternative information criteria generally differ by having different values for the
penalty term. For example, the sample size adjusted BIC [12] is defined as

ﬂ-l—ﬂj
24

sBIC =2L — dlog(
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Because BIC' — sBIC' = O(1), one may wonder of the efficacy of such a deviation
from the BIC. This question is particularly salient when considering that the standard
derivation of the BIC as the approximation to the integrated loglikelihood is only O(1)
accurate asymptotically (so that other O(1) terms are dropped). Here, we comment
on the use of different penalty terms. Suppose that we define an adjusted BIC, say
BIC' as a function of m € [1,n) as BIC'(m) = 2L — dlog(m) = BIC — dlog(%).
When does using such an adjustment matter? Consider two models, say My and

Mji, in competition for selection. Fix an m. Suppose that
(i) di > dp
(ii) BICy > BIC} and
(iii) BICH(m) < BICi(m).

In this case, we see that under the original definition of the BIC, we would choose
M over My, and with the modified definition, we would do the opposite.

In order to analyze this under some assumptions, define two statistical tests:

T(w) = 1{BIC, > BICy}

and

T, (w) = 1{BIC}(m) > BICj(m)}.

When do T and T" differ?
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Case 1: T'=1 and T, = 0. For m < n this is impossible.
Case 2: T'=0 and 7, = 1. We have two subcases.

(a) Suppose M; is the true model. We would be correct in choosing 77 over

T.

(b) Suppose Mj is the true model. Note that in this case, we would make a

mistake by choosing T over T'.

We would like to analyze the probabilities in Case 2. Preferably, (2.a) is much
more probable than (2.b). Unfortunately, under (2.a) the distribution of W ; is only
known for certain cases. For example, with local alternatives of the form 8, = Qu—i-%,
Wip(di — dp) is known to have noncentral chi square distribution with df = d; — dp
and the appropriate non-centrality parameter. Local alternatives are unrealistic in
the applications we have in mind; in model based clustering, we compare models of
different dimensions. Therefore local alternatives are generally not applicable in the
motivating application. Hence, we will defer our analysis under (2.a) to a specific
example.

We can say more about (2.b) with some assumptions.

Proposition 3.3.1 Suppose the models are nested (so that My is a submodel of M, ).

Define Wign = %. Assume the distribution functions of Wip, are uniformly
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Lipschitz continuous in n. Under My, T =0 and T} = 1 with probability

Pry, (log(m) < Wi, < log(n)) — F(log(n)) — F(log(m)), (3.5)

where F'(-) is the distribution function of an F' distribution with df = (d; — dg, o0).

Proof We can do some algebra on (ii) and (##i) to obtain equivalent condition that

(dy — dp) log(m) < 2(Ly — Lo) < (dy — dp) log(n).

If the models are nested (so that Mj is a submodel of M;), then the numerator
of Wi o converges in law to a x? distribution with df = d; — dp by Wilk’s Theorem.
In this case, we note that by Slutsky's Theorem, Wi g, asymptotically has the distri-
bution of an F-statistic with df = (d; — dg, oo). By uniform Lipschitz continuity, the
probability that (if) and (##i) hold when they should not (i.e. choose M; when Mj

is the truth) is given by equation (3.5).

3.3.1 Illustrative Example

We now present an analysis for specific null and alternative models where we
can explicitly calculate the probabilities of cases (2.a) and (2.b). The purpose is to
demonstrate that for finite n, the choice of penalty term is nontrivial.

Let d,dy € N with dy < d. Consider the nested models:
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o My ={N(pI):peRY}
o Mo, ={N(uy,, I): ' R, pf =0for j=dp+1,do+2,...,d},

where [ is the d—dimensional identity matrix.

Let

Then, fy := N(p*,I) € My and fy 4, := N(pg 4,, I) € Mp. Suppose that Xy, Xs,..., X, -
f1 or fy4, according to whether or not M is the true model.

Fix a realization of the data (z;,zs,...,1,). Let T = %ELI z; and Tp4, be T
with the coordinates after dy set to 0. Twice the maximized loglikelihood of the data

under M; is (up to constants)

2L, == — i{xi — ) (x; — 7).

i=1
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Under Mg, it is

2Lgg, = — foi — To4p ) (z; — To,do)

i=1

m
= =) llm—2+7—Toal’

i=1

= £ — 22{1& — ) (T — To 4,) — NIIZT — To,a,]13

i=1

= Li—nl|z — Tog3

so that L4, < Ly.

(2.a) Under fi,

d
— _ 2 = 2
nl|z — Toally = Y (Vnz))
j=dg+1
= Yl?

d
where Y; ~ noncentral X3_, 4,(n Y 5_4113)-

Hence, for any m = 0,
Pry (2Ly — dlog(m) < 2L4,4, — dolog(m)) = Pr(Yi < (d — dp) log(m)) .

Therefore, Pry,(T'=0and T,, =1) = Pr((d — dp)log(m) < Y; < (d — dp) log(n)).

(2.b) Under fy 4,,
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T — Zogl5 = Yao, (3.6)

2
where Yy, ~ Xgr_a_ay)

Thus,

Prfuldn (2L —dlog(m) < 2Ly 4, — dplog(m)) = Pr(Ya, < (d — dp) log(m)) .

Hence, Pry,, (T'=0and T;, = 1) = Pr((d — do) log(m) < Y4, < (d — do)log(n)).

Clearly, we can vary n, m,d, and dy to influence these probabilities. We will now
do so to show how (a) some penalty is better than none; (b) the AIC penalty can
result in mistakes; and (c) the optimal penalty depends on n,m,d, and dy.

Figure 3.1 depicts the probability of (2.a) and (2.b) when n and m vary for fixed
d = 200 and dp = 190 under the alternative (a) and null (b) hypotheses. Lower penal-
ties than the BIC would use generally result in better decisions under f;. However,
there is approximately a 3% chance of error under f; when the BIC would be correct
with the penalty of exp(2), that of the AIC.

Figure 3.2 depicts the probability of (2.a) and (2.b) when d and m vary for fixed
n = 1000 and dy = d — 10 under the alternative (a) and null (b) hypotheses. Lower
penalties than the BIC would use generally result in better decisions under f; without
sacrificing making too many new mistakes under fp.

Figure 3.3 depicts the probability of (2.a) and (2.b) when dp and m vary for fixed
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Figure 3.1: Probabilities of correctly (a) or mistakingly (b) choosing the alternative
over the null when the BIC would not do so. For all curves, d = 200 and dp = 190.
Note that 7.389... = exp(2), the AIC penalty.
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Figure 3.2: Probabilities of correctly (a) or mistakingly (b) choosing the alternative
over the null when the BIC would not do so. For all curves, n = 1000 and dy = d—10.
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n = 1000 and d = 200 under the alternative (a) and null (b) hypotheses. Lower
penalties than the BIC would use generally result in better decisions under f; and
not too much worse decisions under f;. However, there is approximately a larger
chance of error under f; when the BIC would be correct with the AIC penalty for
smaller dy,.

This example may seem overly simplistic. Indeed, it does not involve semi-
supervised clustering at all. However, it does demonstrate the complexities of pe-

nalization in model selection with finite samples.

3.3.2 Simulation Study

We would like to demonstrate the impact of the previously discussed model
selection complexities from the illustrative example on the inference task of semi-
supervised clustering. To that end, consider the following procedure for constructing
a dataset X C R?, semi-supervising it, and clustering it using model-based clustering

with different penalties. We will then compare the resulting ARI scores.

Let
0 2
Hi = pa = and pta =
0 2
Also, let
5 .35
Y=
35 .5
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Figure 3.3: Probabilities of correctly (a) or mistakingly (b) choosing the alternative
over the null when the BIC would not do so. For all curves, n = 1000 and d = 200.

47



CHAPTER 3. MODEL SELECTION AND SEMI-SUPERVISED CLUSTERING

and

[ ) —.35] |

—35 b

g =

Consider the following procedure for generating one Monte Carlo Replicate.

1. Define the pdf of each datum as being from a mixture model f(X) = ¥ 3_, T fi(X),

where fi. = N(pu, Xx) with 623 generated using the onion method of [27]
2. Draw n® = 100 supervised from the first two components.
3. Draw n" = 5, 10, 20, 40, 80, . . . , 640 unsupervised from the full mixture model.

4. Cluster using 2 — 5 Gaussians with various constraints on the proposed covari-

ance matrices.

5. Choose the models for clustering based on different values of m in the penalty

term d log(m), where m € [nY, n” + n%).

6. Calculate resulting A Rls using the chosen models..

Figures 3.4 and 3.5 shows how different penalties can affect the overall clustering
performance on the unlabeled data. Generally, we see that with more unsupervised
data, there are less differences between the different choices of penalty terms in the
interval [n”,n" 4+ n®], which makes sense given the asymptotic results. In this par-
ticular example, less penalization allowed us to detect the third component sooner,

improving the ARI values in the resulting clustering. Thus, we have shown that in an
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example closer to our problem of interest, the restricted penalization derived in the
previous section can be efficacious as compared to the standard penalty. Additionally,
as 1. grows, the differences between the information criteria that are dependent on n

to the same order becomes negligible even for relatively small values of n.

3.4 Conclusions

In this chapter, we consider some aspects of model-based semi-supervised cluster-
ing. First, we define a model for the semi-supervised case. Next, we derive a BIC
applicable for it. Finally, we explicate some aspects of (1) differences in information
criterion (like the BIC) to justify the modifications we make in our derivation. To
assist us in this explanation, we explicitly calculate the probabilities of a benefit or
detriment in using a modified BIC in an illustrative example. Finally, we present a

simulation study in the context of semi-supervised clustering.
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Figure 3.4: ARI vs penalty in BIC"(m). Higher is better. Red circles represent
significant paired Wilcoxon tests for larger ARI values than vs the standard BIC
(at the .05 level). The area to the right of the green line represents the interval
[nY, n" +n%).
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Figure 3.5: ARI vs penalty in BIC'(m) for largest value of the total dataset sim-
ulated. Higher is better. Red circles represent significant paired Wilcoxon tests for
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of the green line represents the interval [n”,n" + n%].
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Chapter 4

Semi-supervised K-means+-

It is better to be right than to be

WIONE.

Andrey Kolmogorov, as attributed

by Theodore Drivas.

Most of this chapter appears in [59].

The EM algorithm for clustering requires initialization with either initial param-
eters or initial (possibly soft) cluster assignments. Because it is generally unrealistic
to obtain adequate initial parameters, initial cluster assipnments are typically used.

Two main strategies are employed to this end:

(1) randomly partition the data, run the EM algorithm, save the likelihood, and

repeat, saving the results corresponding to the highest likelihood; or
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(2) use another algorithm (e.g. hierarchical clustering) that is easier to initialize in

a principled fashion.

Due to the modifications necessary for semi-supervised hierarchical clustering
(namely, moving towards must-link-before style constraints), we would prefer not
to use that for the second strategy of initializing the EM algorithm. Thus, we present
another semi-supervised clustering algorithm in this chapter.

In this chapter, we propose a semi-supervised version of k-means++. We first
introduce the definitions and notation to be used afterwards in the remainder of
the paper. Next, we present the main algorithm, where we modify the k-means++
algorithm for the semi-supervised with labels case. We then prove an approximation
bound that improves with the amount of supervision. Finally, we include numerical
experiments showing the efficacy of the algorithm on simulated and real data under

a few performance metrics.

4.1 Preliminaries

We will present a few definitions to clarify the notation used in the theoretical
results. Recall that X C R? is our data. We will additionally partition X = X™UX()

into the unsupervised and supervised data, respectively.

Clustering A clustering, say C, is a set of centers that are used for cluster assign-
ments of unlabeled points.
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Potential function Fix a clustering C. Define the potential function as ¢¢ : 2% —

R* such that for A C X,

éc(4) = 6(4;C) =Y " minfla — ||

acA

Optimal cluster Let C* be a clustering solving the k-means problem from equation

(2.1). Let ¢* € C*. An optimal cluster X.. is defined such that
X.={z€ X :c" = argmin_.|z — |’}

Distance squared weighting function Call the current clustering C. Define D? :

B¢ — R+ such that

D*(z) = ¢({z};C).

Covered cluster Call the current clustering C. An optimal cluster A is covered if

CnX.#0.

4.2 Semi-supervised K-means+-+ Algorithm

We now propose an extension to the k-means++ algorithm for the semi-supervised
case. We will called this the ss-k-means++ algorithm. Suppose that we want to

partition our data X R into G groups. Assume that the semi-supervision occurs
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in the following way:
(1) choose a class ¢; uniformly at random;
(2) choose g; observations uniformly at random from A,
(3) and label these g; observations as being from class i.

We optionally allow repetition of steps 1 — 3 to give more partially supervised classes.
The modified k-means algorithm, which is Algorithm 4 followed by Algorithm 2,
replaces the initial step of choosing a point at random by choosing g; points as
above, then setting the first center to the centroid of those points. Also, during
the D? probabilistic selection process, we do not allow centers to be chosen from
the supervised points. Note that this is essentially the k-means++ version of the

Constrained-KMeans algorithm [9].

4.3 Theoretical Results

Consider the objective function ¢(X;C) = Y _, min.c ||z — ¢||, the potential
funetion associated with a clustering C'. Arthur and Vassilvitskii [5] prove that the
expectation of the potential function after the seeding phase of the k-means++ algo-

rithm satisfies

E[¢(X)] < 8(log(k) + 2)¢opr,
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Algorithm 4: Initialization of centers for semi-supervised k-means++
Input: X™ (n, unlabeled datapoints)
X' (n, labeled datapoints)
L e {1,2,3,...,k}" (labels corresponding to the data in X%
k (number of centers)
Output: C (set of initial centers)
Let n; be the number of supervised datapoints with label £.
Let C = 0.
for {=1,2,...k do
if ng = 0 then
Let ¢; be the centroid of the labeled datapoints with label £.
Update C = C U {c¢}.

while card(C) < k do
Choose a datapoint z € X® with probability proportional to D?(x).
| Update C =CU {z}.

10 return C

=-IE - -

| =

where ¢ pr corresponds to the potential using the optimal G centers. We will improve
this bound for our algorithm by mostly following their analysis, mutatis mutandis.

The sketch of the proof is as follows:

1. Bound the expectation of the potential for the first cluster (chosen by semi-

supervision)

2. Bound the expectation of the potential for clusters with centers chosen via D?

weighting conditioned on the center being from an uncovered cluster.

3. Bound the expectation of the potential when choosing a number of new centers

at once in a technical result

4. Specialize the technical result to our algorithm and get the overall bound
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Consider a collection of data A of size n. Suppose we have g uniformly chosen
at random members of A in a set S C A that we consider pre-labeled. Consider the
mean of these datum, say @g, to be the proposed center of A, then the expectation

of the potential function is

E[¢(A;as)] =E [Z lla — ES“E] )

acA

where the expectation is over the choice of the elements of 5. We can compute this

expectation explicitly. We will first need some lemmas.

Lemma 4.3.1 Let A C R? and ¢ be the centroid of A. Let n := card(A). For any
2 €RE Yoealla =217 = Xocq lla — el +nll2 —

Proof Observe

Sla—cl* = S li@—2)+ (-0
acA

acAd
= Y (la—2I* +2(a— 2) (2 — ) +allz— ]

acA

= Z la — 2| 4 2n(c — 2)T (2 — €) + n||z — ¢|?

acA

2 2

= Y lla—2]? —nljz — |
acA

Hence,

2 2 2
S lla— 22 =" lla—cll? +nflz |,

acA acA
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which was what was wanted. |

Lemma 4.3.2 IfS C A is a subset of A= {x; e R?: i =1,2,...n} of size g chosen

uniformly at random from all subsets of A of size g, then

IE[Z T;) = % Z T;.

eSS T

Proof Let X; be the indicator random wariable that is 1 if r; € S and 0 otherwise

(i.e. X = Iyz.e9)). Observe

IE[Z x| = IE[Z“: z,-XdZn:Xi:
= Z:riE[X|ZX

i=1

Observe E[X;|Y 1, X; =g] = —{9:‘—:1) the probability that z; is chosen for a group
q

of size g from n objects in A. The conclusion follows. |

Lemma 4.3.3 If S C A is a subset of A= {z; e R?: i = 1,2,...n} of size g chosen

uniformly at random from all subsets of A of size g, then
: 9@-1)
a\g— g
E [(Z 5‘:) (Z )] e DE L 03 aTa,
rics TS ij 1—1

Proof Let X; be the indicator random wariable that is 1 if r; € S and 0 otherwise
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(i.e. Xi = X{zics})- Observe

|(Z) ()] - #|(E) (o) oo

= E i::r?sz;Xj |ZH:X,E =4q
| i =1 J

- Z:.f:rle [Xin |ZX5=Q -
i =1 i

Observe

(3)
(=

(2)

since the first case represents the probability that z; and x; are chosen together

X:X; 1Y Xe=g

=1

E

] G2 iz

and the second case represents the probability that z; is chosen, as X? = X;. The

conclusion follows. [

Now we present the promised expectation.

Lemma 4.3.4 IfS C A is a subset of A= {z; e R?: i =1,2,...n} of size g chosen

uniformly at random from all subsets of A of size g, then

E[¢(A;as)] = (1 + QE;__EI)) dopr(A),
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where

$orr(A) =) _ lla;s — c(A)|%,

aied

c(A) is the centroid of A (i.e. e(A) =13 _,a), and as is the centroid of S.

Proof Let n = card(A). Observe

E[¢(4;as)] = E Z”ﬂ—ﬁS“g]

LacA

= E|Y lla— ()| + nllas — c(A)]?

LacA

by Lemma 4.3.1

= Y lla—c(A)|> + nE [Jlas — c(A)|]

acA

= dopr(A) +nkE [[las — ()] .
Let us determine E [||as — c(A)||?] . Observe

E[las — c(A)?] = E[alas] — 2¢(A)E[as] + (A c(A)

_ E[afas] — 20" 1c(A)'E [(E .:.-,)

acs

+e(A) e(A)

= E [ﬁ.gﬁg] — Qg_lc{A}TE Zﬂ"i +¢c(A)Te(A) by Lemma 4.3.2
n i=1

= E[a%as] — 26(A)Tc(A) + c(A)Te(A)

. [(E ) (g )] A ()
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Applying Lemma 4.3.3, we have

E [|las — c(A)|?] = (ﬁijﬂzmﬁ Ea a«.)—c{AJTc{AJ

i#j

= (n—lza“aj+(l_n— )ZﬂTﬂa)—C{A} c(A)

= i (g;_lﬂﬂc[ﬂ)Tc{ﬂ) + (1 — i—:i) ﬂ?ﬂ;;) _ CI[H)TC(A)

i=1

= (QT_IHE T 1) c(A)Te(A) + % (1 — i:i) ;afa,-
= ( }c{A] e(A) + o {n I}Za a;

— %( Z.:.-, a — ¢(A) c{A})

i=1

- % (Z ala; — nc{A}Tc{A})

i=1

n—g
) ljfi’opr(ﬂl

Hence, E[¢(4;as)] = (1+ 7255 ) dorr(4). 1

Lemma 4.3.4 will handle the semi-supervised clusters. Suppose that Copr is the
optimal set of cluster centers. Now, we consider the contribution to the potential
function of an optimal cluster X* := {z € X : ¢* = argmin.cc,,. ||z — ¢||*} from
Copr when a center is chosen from Cppr with D? weighting. If we can prove a good
approximation bound, then we can say that conditioned on choosing centers from
uncovered clusters, we will have a good result on average.
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Lemma 4.3.5 Let C' be the current (arbitrary) set of cluster centers. Let X'* be any
cluster in Copp. Let x* be a point from X* chosen at random with D? weighting.
Then,

E[p(X* Cu{z*})|z" € X*] < 86(X™; Copr),
where the expectation is over the choice of new center x*.

Proof This is essentially the proof from Lemma 3.2 [5]. We will present our own
version for completeness, however.
Conditioned on the fact that the new cluster center will be chosen from A™*, any

given point x € A™* is chosen as the new center with probability

Dz) _ _ mineclz—cf®
Efek* Dﬂ(f) Ez‘e)c'* l'ﬂil'lEEc I|$’ - c"z

Then,

]E[:i:{)c’*;-:‘:‘ U {z*})|z* € .:t'*] = 3" P(z is chosen from X*) §(X*;C U {z})

reA™*

_ Z mil .o I|-'17 — lI3I|2 Z (l'ﬂll'l (DE{I.H], |I$ﬂ _ I"E)) .

fapgr EI'EX“ HﬂnEEC' |I$; - CHE e X

Recall that ||z —¢|| < ||z" — z|| + ||z" — ¢|| for each center ¢ € C by the triangle

inequality. Taking the min of both sides over ¢, we have

min ||z —¢|| < ||” — z|[ + min [[z" — €],
celd el
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implying

D(z) < |[z" — x| + D(z").

Squaring both sides, we have that

D*(z) < (||lz" — z|| + D(z"))*.

The power-mean inequality implies

(Ilm"’ —z|[ + E'liﬁ':”})2 < =" = z||* + D*(z")
2 - 2 '

and hence

(l” — zl| + D(2"))" < 2|jz" — 2||* + 2D*(2").

Therefore, we know that
D*(x) < 2||z" — z||> + 2D*(z").

Summing over all z” € A*, we have

2 " 2 i

P EX!- z"E.—Y"
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Applying this inequality, we have

E[¢(X* C U {z*})|z* € X7]

CHr - E = o |I$ _:":"”2 . " 4
> d{-r:n =X Y (min (D?(z"), || — z||*))

reX* z’E.—'{'* D{f)z e
min (D?*(z"), ||z" — z||
mrdwf*) 2 2, )
" 2
m"d{x‘] EI"EX‘ Iz" — = 20 "
< D) + — llz” — z|1®
:r;* Y arexe D(@')? :ﬂze.:r* d{X ) ; r"'EZX‘

- mrd{X*) > D I

rE X I"E X+

Since

mrd{)ﬁ’*) Z Z 2" —|I* = E[¢(X"; )],

IE;‘E" I"E;‘r"
the expectation of the potential function of a single cluster if a center is chosen
uniformly at random from its points, we can apply Lemma 4.3.4 with ¢ = 1 and

A= X* Hence, E[¢p(X*CU{z*})|z* € X*] <8s(X*;Copr). |}

Before introducing the main technical workhorse, note that ¢(Q1UQ2) = ¢(Q1) +

() for any sets ¢, and @, such that Q;NQ, = 0. Also, ¢(Q1\Q2) = 6(Q1) —d(Qa)

for any sets )y and ()5 such that )5 C ;.

Lemma 4.3.6 Fiz a clustering C. Suppose there are u € M uncovered clusters from

the optimal clustering Copr. Denote the points in these uncovered clusters as X, (not
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to be confused with X™ ). Let

X.=X\X,

be the set of points in covered clusters. Use D* weighting (excluding supervised data)

to add t < u new centers to C' to form C'. In a slight abuse of notation, let ¢(-) =

¢(-;C), ¢'(-) = ¢( C"), and popr = &(-; Copr). Then,

i

—La(x.),

(7

E[¢(X)] < (6(Ae) + 8dopr(Au)) (1+ He) +

where H, = E;=1 % is the partial sums of the harmonic series. We will define Hy = 0.

Proof We have that the probability of choosing a point from a fixed set A with D?

weighting ignoring supervised points is

AN XM)
HA)

Pr( new center c € A) =

Further, note that X(*) N X, = 0, since all supervised clusters are covered.

Following the argument in [5] using the above probabilities, we will have our
result. First, we plan on using induction over both t and u by proving that if the
result is true for (f — 1,u) and (¢t — 1,u — 1), it is true for (t,u). For most of the base
cases, we show that the result holds for (f = 0,u) for all u € M. Clearly, if t = 0,
O(X) = ¢(Xe) + ¢(Xo) < ($(Xe) + 8bopr(Xu)) (1 + Ho) + *2(Xu), since Ho = 0.

For the final base case, we check the result for (t = 1,u = 1), where we are only
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adding one center and only one optimal cluster is uncovered. It helps to break up
the expectation of the new potential into two terms by conditioning on an event and
its complement and calculating the (bounds on the) conditional expectations in both
cases.

Define event B as the event that we choose our new center from the one uncovered

cluster. Note that P(B) = 2% and P(B¢) = $50X%) Then,

E[¢'(X)] = P(B)E[¢'(X)|B]+ P(B)E[¢'(X)|B

¢(Xu) $(Xen XM)

E[¢'(X)|B]

For the first term, we can apply Lemma 4.3.5 because we are conditioning on

choosing from an uncovered cluster with D? weighting. Hence,

E[¢'(X)|B] = E[¢'(X.)+ ¢(Xu)|B]
= E[¢'(X.)|B] + E[¢(X,)|B]
< E[¢'(A.)|B] + 8dopr(X,) by Lemma 4.3.5

< o(A) +8dopr(Au),

where the final inequality is from the fact that ¢'(A) < ¢(A) for any set A and for

any new center.
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For the second term, note ¢'(X) < ¢(X) = ¢(AX.) + ¢(X.). Hence,

E[¢/(X)|B] < $(Ae) + o).

Combining terms, we have that

H(Xy) + P(X. N X))

P(Xu) $(Xe N X ™)

E[¢'(X)] < S(X @) P(A:) + q&{X(“)}Sfﬁ'OPTqu} + H(X) ()
P(X,) B(X.NXM™)
qg’{xﬂ} + qb(,f(“)}aqéapr{x“] + Wtﬁ{fc)
< 0 + S Bdorr(X) +6(X)
= 2¢(X.) + Boopr-

Hence, the proposition holds for t = u = 1.

For the inductive step, suppose that the statement holds for (t = t*—1,u = u*—1)
and (f = t* —1,u = u*). We will again consider two cases by conditioning on an event
and its complement. Define the event that the first center is chosen from an uncovered

cluster as U. Clearly,

E[¢/(X); (t = *,u = u")] =P(V)E[$ (X)|U; (t = 1°,u = )]

+ P(USE[¢'(X)|U (t = t*,u = u*)].

For the first term, note that the first center is chosen from a covered cluster with
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probability P(U) = % Also, we have the loose bound
E[¢'(X)|U;(t =t*u=u")] < E[§(X); (t=t"— 1,u = u*)]

based on the fact that choosing any new center improves the potential over not
choosing a new center. Thus, applying the inductive hypothesis with (t =t* —1,u =

u*), we have

P(U)E[¢'(X)|U; (t =t*,u = u”)]

{M( v-(-1)

= T A W) (o(Xe) + Boopr(Xu)) (1 + He_q) + i - qg,(,};u)) .

For the second term, assume that [UU° occurs; that is, we choose the first center
from an uncovered cluster. Further consider that we chose the new center from a
particular uncovered cluster, say A, which occurs with probability W"‘f’%’,—]. Let E, be
the event that a point a € A was chosen conditioned on the fact that we chose from
A using D? weighting. Define p, = Pr(E,). Define ¢,(-) as ¢/(-) conditioned on E,.

Note that for any a € A chosen as the new center, X, + A, \ 4 and &, + A UA.

Then, the contribution to the expectation of the final potential is

$(4)
(X )

S (E[Bu(AUX) + (X \ A (t =t — Lu=w —1)]),  (41)

acA

where the expectation is over the choice of t* — 1 centers with u* — 1 remaining
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uncovered clusters.

Define = = (¢(A&,) + 8dopr(X,)(1 + Hp_,) for notational purposes. Apply the
inductive hypothesis with ' = u* — 1 and ' = t* — 1 to bound the sum in Equation

(4.1) with

= __ g

5 p ((6u(A U + 8d0rr X\ AN(1+ Heor) +

u*—1
acAd

ba( X\ AJ)

EICAVI)

= 3 0. ((6a(A) + () + Bborr(X.) ~ Bdorr(A)(1 + He 1) +

u*
acA

u* —t

;qﬁ'ﬂ{&’u \fl)) .

=D P ((%{A) — 8¢opr(A) (1 + He_1) + S+

u* —
acA

Note that ¢.(X, \ A) < o(Au\ A) = o(Xu) — #(A). Making this substitution in the

equality, we have that the contribution to the potential is bounded by

4(4) e
S 2P (6u8) —8d0rr(A) 1+ He -+ 2+ = 30000 - 6047

Because ) _, Pada(A) = E[¢'(A)|z € A chosen with D* weighting], we can apply
Lemma 4.3.5 to conclude ) _, Pada(A) < 8dopr(A). Hence, we replace the first
term with < 0. Next, note that the remaining terms do not depend on a specifically

being chosen. Hence, the contribution to the potential is

#A) e
) EZ;pa ({cﬁﬂ{A] ~860pr(A)) (1 + Hoe1) + 2+ ———(d(X,) - d:{A]})
< o (2 SR ) - s
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We know that E:‘;l o(A;) = @(X,). Hence, the power-mean inequality gives that

-3 oAy < —Lay (+2)

i=1

Sum over all uncovered A; to give contribution less than or equal to

X~ T X

A &) 1 u* —t* , 1 ) 1
X))~ =+ HA@) ( (?5'(31’“) u*tﬁ{-;t'u} )) by Equation (4.2)

HX) (- u—t
H(X) (“* .

) o 1 (“ —C($() —Z@{m ))

[

)

Therefore,

PRV (= vru =) < 2o (2+ X2 Lo,).

Combining terms, we have that

E[¢'(X);(t =", u = u)]
(u) — F* %
|, dAnX }(u t +1¢{Xu)) S(X) (u t q&{%))

== P(X ™) X)) \
* g% (u)
— 2+ () + %%ﬁm)
-t (u)
— ($(X.) + 8bopr(Xa)) (1 + Hey) + LT g(x,) + ﬁﬁg) B(Xe ;x )
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Because J#7e) < 1 and ¢(X.NX™) < $(X.) < $(A.) +8dopr(X.), we can combine

the last and first terms in the final inequality to yield

u* —t*

B[¢/(X); (¢ = "0 = )] < (8(X) + 8bopr(X)) (1 + Hoy + ) + T L(,)
Finally, since Hg_1 + u% < He_ 1+ t% = H;., we have that
E[¢/(X); (t = 1, u = u)] < ((X.) + 8opr(X))(1 + He) + “—Tg(X,)

as desired. |

Theorem 4.3.7 Suppose our story about how the supervision occurs holds. Let C =
0. For each label £ that we have supervised exemplars of, add the centroid of the
supervised data labeled £, say c; to C. Suppose that card(C) = G. Let ny; be the number
of supervised exemplars with label €; for j = 1,2,...,G. Then, we haveu = k- G
uncovered clusters. Addt = u new centers using D* weighting ignoring the supervised

points. The expectation of the resulting potential, &', is then

E[¢/(X)] < 8dopr(X)(2 +log(k — G)).

Proof Note that after supervision, A, = Uji1 AXe;, where Ap; is an optimal cluster
which we have covered through supervision and the double subscripts £; are to account

for a possible relabeling. Hence, X, = X \|J5_,; X};. Therefore, ¢(X,) = 35 | (Xy,),
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and gopr(Xu) = dopr(X) — ch=1 ¢opr(AXe;). Then, applying Lemma 4.3.6 with

u=t=k— G, we have

E[¢/(X):(t =k — G,u =k — G)]
< ($(X.) + 8dopr (X)) (1 + Hic)

e
= (Z ((Xy;) — Bdopr(Ay;)) + Sfﬁopr{x]) (1+ H_g).

j=1
Applying Lemma 4.3.4 to each ¢(AXy;), we have

&

E[¢/(¥)] < (E (—'r + %) dorr(Xe,) +3¢0PTI[.1'}) (14 Hi ).

j=1
Finally, using the fact that H, o < 1+ log(k — &), we have our result. |

The end result is a modest improvement over that of [5] that scales with the level of
supervision. The final inequality in the proof is tighter than the result stated in the
theorem, since the factor of 8 could be lower depending on the contributions of the

supervised clusters in the optimal clustering.

T2



CHAPTER 4. SEMI-SUPERVISED K-MEANS4++

4.4 Numerical Experiments

4.4.1 Performance Measures

We use several measures for each experiment. First, we use the cost, or the
potential function with the final centers. For comparing to the theoretical bound,
we also use the fraction of optimal cost, where “optimal” is derived by taking the
centroids for each class as determined by the ground truth labels. Next, we use the
number of Lloyds iterations until convergence.

Finally, we will use the Adjusted Rand Index (ARI) [26], which is an index that
compares how closely two partitions agree. The ARI is the Rand index, the ratio
of number of agreements between two partitions, after adjusting for chance. It is
essentially chance at 0, meaningless < 0, and perfect at its maximal value, unity.
Since ground truth labels are available for our datasets, we can compare them to
the partitions yielded from the output of the algorithms in Section 4.4.3. Thus, a
large ARI value indicates good clustering performance as determined by fidelity to

the ground truth partition.

4.4.2 Data

We showease our algorithm on three datasets (cf. Figure 4.2 for depiction). The

first, Gaussian Mixture was inspired by both [5, 8]. We drew k = 24 centers from
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the 15-dimensional hypercube with side length of 10. For each center ry, we drew
n; = 100 points from a multivariate Guassian with mean ¢; and identity covariance.
This dataset is remarkable because it is easy to cluster by inspection (at least with
larger side-length, as in the original papers) yet is difficult for Lloyd’s algorithm when
initialized with bad centers. For our chosen side length, it is not easy to cluster by
eye. Note that the supervision story (where centroids of the class labels correspond
to best centers) is likely to hold for most realizations of the data.

The next two datasets are real data for which the assumption that the labels match
up with minimum cost clusters is not met. The second dataset is the venerable Iris
dataset [19], which uses d = 4 variables to describe k = 3 different classes of flowers.
While this dataset is old, it is nonetheless difficult for k-means to handle from a
clustering standpoint. This fact is widely known; indeed, even the Wikipedia page
for the Iris dataset has a rendering of k-means failing on it.[55] We compared the
ARI for this dataset and the Gaussian Mixture dataset while varying the ratio of
side length of the hypercube to standard deviation (¥ = ol with ¢ = 1 fixed), and
we found that the datasets were roughly equivalent for side length around 3.25. This
is under one percent of the side length and 10~ times the volume of the norm25
dataset [8] that our Gaussian Mixture dataset is based on. Thus, we observe that
the Iris dataset is harder to cluster than the synthetic dataset.

The third dataset, Hyperspectral, is a Naval Space Command HyMap hyper-

spectral dataset representing an aerial photo a runway and background terrain of the
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Figure 4.1: Image corresponding to the Hyperspectral dataset as seen in Figure 2
of [45]. Each pixel can be classified according to what it represents.

airport at Dalgren, Virginia as originally seen in [45] (ef. Figure 4.1 for a depiction
of the location). Each pixel in the photo is associated with d = 126 features rep-
resenting different spectral bands (e.g. visible and infrared). We took the first six
principal components to form a dataset with n = 14748 data in RS, as chosen by the
minimum number of dimensions to capture > 97.5% of the total variance. The first
two principal components are depicted in Fig 4.2. The k = 7 classes are the identities
of each pixel (i.e. runway, pine, oak, grass, water, scrub, and swamp). Based on the
ARI scores presented in the forthcoming results section, this dataset is only a little

easier to cluster than Iris.
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Figure 4.2: First two dimensions of the datasets (one realization for Gaussian
Mixture). Because Gaussian Mixture has 13 more dimensions than are shown here,
clustering it is considerably easier than this fizure would imply. Note, however, that
we have overlapping classes (as denoted by the colors) in all datasets.
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4.4.3 Algorithms

For both datasets, we apply several algorithms: ss-k-means++, Constrained-KMeans,
and Constrained-KMeans algorithm initialized at the true class centroids. We con-
sider the latter algorithm as an approximation to the optimal solution. Also, because
the “++" versions of the algorithms supposedly improve the initialization, we consider
both ss-k-means++ (without Lloyds) and Constrained-KMeans (without Lloyds) to
verify this improvement. Constrained-KMeans and Constrained-KMeans (without
Lloyds) use a random sample of the unsupervised data weighted uniformly for the
remaining initial centers (after using centroids of the labeled points). The algorithms
without Lloyds use their respective initialization strategy to choose initial centers then
move straight to class assignment without updating the initial centers. We consider

these algorithms as “initialization only” methods for this reason.

4.4.4 Results

We vary the supervision level from 0% to 100%, where we add supervised classes
and sample 5, 5, and 50 datapoints per class to label for Guassian Mixture, Iris,
and Hyperspectral, respectively. Note that this is percent of clusters which have
exemplars and not percent of all points which are labels. Also, at 100% supervision,
ss-k-means++ and Constrained-KMeans are the same, since there are no additional

centers to choose. We did not allow the supervised data to change cluster assignment,
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s0 the approximation to the optimal can change with the level of supervision and with
different supervised data chosen . We set k equal to the true number of groups (24
for Gaussian Mixture, 3 for Iris, and 7 for Hyperspectral). We used 100 Monte
Carlo replicates at each level of supervision.

Figure 4.3 shows the cost as the level of supervision changes. We observe the cost
decreases with more supervision. Also, we see the same relative performances of the
algorithms, with the ++ version outperforming the benchmark. Observe that the
approximation to the optimal solution is the best. Figure 4.4 depicts the theoretical
bound. All algorithms are below the bound (in expectation).

Figure 4.5 shows the number of iterations before Lloyd’s converges. We can see
that improved selection of initial centers by D? weighted randomization leads to
fewer iterations before convergence. We expected this; Arthur and Vassilvitskii [5]
observed a similar phenomenon with no supervision. More supervision did not seem
to affect the number of iterations until very high levels (near 100%). For the real world
datasets, we can see that the approximation to the optimal algorithm required more
than one iteration to converge, indicating that the centroids of the true class labels
do not match with the locally minimal cost solutions. This means that the conditions
for the supervision in our proofs do not hold for this dataset. Nevertheless, both cost
and ARI improve with additional supervision.

Figure 4.6 shows the ARI for all algorithms. Note that supervision improves the

ARI, as expected. Also, ss-k-means++ generally outperforms Constrained-KMeans.

8
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Figure 4.3: Cost (value of the potential) shown as a function of the level of super-
vision for 100 Monte Carlo replicates. Shading indicates + two standard deviations.
Colors indicate algorithm:

cold: Constrained-KMeans (without Lloyds iterations);

blue: ss-k-means++ (without Lloyds iterations);

recl: Constrained-KMeans;

oreen: 88-k-means++; and

pink: Constrained-KMeans initialized at true centroids of labels.

The same observation holds for the initialization only versions as well. Remarkably,
the true centroids and Lloyd’s algorithm is outperformed by the initialization only
methods on the Iris and Hyperspectral datasets at 100% supervision for the ARI
metric. This is due to the fact that the true classes do not correspond to the minimum

cost solution, which is what Lloyd’s iterations would improve (apparently at the cost

of ARI).
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Figure 4.4: Fractional cost (value of the potential over an estimate of the optimal)
plotted as a function of the level of supervision for 100 Monte Carlo replicates. Shad-
ing around the lines indicates + two standard deviations. The shaded region is the
region corresponding to the theoretical cost in expectation from Section 4.3. Colors
indicate algorithm:
cold: Constrained-KMeans (without Lloyds iterations);
blue: ss-k-means++ (without Lloyds iterations);
red: Constrained-KMeans;
oreen: 8s-K-means++; and
pink: Constrained-KMeans initialized at true centroids of labels.

4.5 Conclusions

In this chapter, we present a natural extension of k-means++ and Constrained-KMeans.
Then, we prove the corresponding bound on the expectation of the cost under some
conditions on the supervision. No assumptions are made about the distribution of
the data. Finally, we demonstrated that on three datasets judicious supervision and
good starting center selection heuristics improve clustering performance, cost, and

iteration count.
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Figure 4.5: Lloyd’'s iterations before convergence plotted as a function of the level
of supervision for 100 Monte Carlo replicates. Shading indicates + two standard
deviations. Colors indicate algorithm:

cold: Constrained-KMeans (without Lloyds iterations);

blue: ss-k-means++ (without Lloyds iterations);

recl: Constrained-KMeans;

oreen: 88-k-means++; and

pink: Constrained-KMeans initialized at true centroids of labels.

Possible future theoretical work includes incorporating the advances set forth in
the extensions to the original k-means++ paper. For example, we could produce
semi-supervised versions of k-means# (8] and k-means|| [4] with commensurately
improved bounds. Relaxing the constraints to the pairwise cannot-link and must-link
constraints as in [54] is also desirable, because the assumption of exogenously provided
hard labels is often untenable. Other assumptions that would be nice to relax would

be the equal cluster shapes and cluster volume implicit in k-means clustering.

81



CHAPTER 4. SEMI-SUPERVISED K-MEANS4++

= = =
%% of Groupe Supervised o of Greups Supervissd

(a) Gaussian Mixture (b) Iris

&
5 G Superdised

(c) Hyperspectral

Figure 4.6: Average ARI shown as a function of the level of supervision for 100
Monte Carlo replicates. Shading indicates + two standard deviations. Green beats
red. Colors indicate algorithm:

cold: Constrained-KMeans (without Lloyds iterations);

blue: ss-k-means++ (without Lloyds iterations);

recl: Constrained-KMeans;

oreen: 88-k-means++; and

pink: Constrained-KMeans initialized at true centroids of labels.
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Chapter 5

Applications

I'm not crazy about reality, but it's
still the only place to get a decent

meal.

Groucho Marx

In this chapter, we present two applications of semi-supervised model based clus-

tering. The first experiment section is based on our work in [58).

5.1 Identifying Fly Behaviotypes

In one of the motivating applications for this work, classes of neurons in Drosopho-
lia larvae are controlled using optogenetics (cf. [1] regarding optogenetics). In [52],

they observe the reactions of the affected larvae to stimuli in high-throughput behav-
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ioral assays. The goal is to determine which classes of neurons cause similar changes
in behavior when deactivated.

We initially collected data on m = 37780 larvae grouped into b = 2062 dishes.
By changing the optogenetic procedure, £ = 11 known lines are created, pbdl, 38al,
61d0, ppkl, 11f0, pbd2, 38a2, pbd3, ppk2, iavl, and 20c0. Of these lines, we discarded
the larvae in pbd3 and ppk2 because they had less than 40 larvae each. Further,
we discarded all larvae with an unknown line. After curating the data, we now
have n = 7730 larvae. Each larva is observed while responding to various stimuli.
Vogelstein et al. [52] expand on the methods of [44] and [45] and describe how the
observations are embedded into R, where here d = 30. We use the method presented
in [61] to select the elbow of the scree plot to further reduce the data to d = 14
dimensions. We did not perform any additional feature selection.

For each Monte Carlo replicate, we use a small subset of the data where the line
was known (101 randomly chosen animals from each of the 9 remaining lines) along
withm = 0,1,2,...8 pre-labeled data randomly chosen from the 101 animals in each
line. We wrote an R package entitled ssClust to perform semi-supervised GMM with
similar options to the popular Meclust software, which is an R package for GMM [25].
We cluster the points using both 8sClust and Meclust. Then, we compute the ARI
against the line type for both methods.

We observe that the initialization strategy of using ss-k-means++ instead of hi-

erarchical clustering results in a significant improvement to the ARI even with no
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supervision. We find that a single animal per line significantly improves the cluster-
ing results, as expected (cf. Figure 5.1). Further, we can see that there are diminishing

returns on additional supervision starting at 3 supervised examples per line.

ARl vs. Number of Labels Known (MCR=500)

w | -~ Mclust
s | — ssClust
- /Y_/‘-’_C_/JI
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Figure 5.1: Average value of the ARI for 500 Monte Carlo replicates for experiment
5.1. Error bars are +2 standard errors.

5.1.1 Differentiating Lines

Vogelstein et al. [52] posed and answered questions of the form, “Is line X different
than line Y (in terms of behaviotypes)?” As an illustrative example, we will perform a
similar analysis comparing the ppkl and pbdl lines but will additionally incorporate
some supervision. Here, our interpretation of the clusters will shift from lines to

behaviotypes. Our proposed procedure for distinguishing between lines is as follows:
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(1) Sample 101 animals from each line

(2) Label 3 animals from each line according to a labeling strategy (see below)

(3) Cluster the animals using ssClust and Mclust into between 2 and 12 clusters

using the parameterizations EEE, VVV, VII, and EIL

(4) Collect the results and construct empirical probability of cluster membership

for each line

(5) Compute the Hellinger distance between the two lines to be compared and store

this as statistic H

(6) Simulate the distribution of H under the null hypothesis that the lines are
the same by permuting the labels and computing the Hellinger distance H; for

i=1,2,..., B for some large integer B.

(7) Return an empirical p-value based on steps (5) and (6).

In item (2) we did not specify a labeling strategy in detail. We propose a strategy
that is reasonably realistic to execute for our particular dataset. Vogelstein et al
[52] used a hierarchical clustering scheme in which the first few layers were visually
identifiable by watching the worms. Thus, by using their labels from an early layer
(layer 2, with 4 clusters total), we have a plausible level of supervision for a human to
have performed. Specifically, we sample at random a label from the true labels among

a line with weights proportional to the counts of each label in that line. Using that
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label, we sample 3 worms of that label in that line to be the supervised examples.
Next, for the other line, we sample a different label, and 3 examples with that true
label.

We see that based on all three labeling strategies that both s8sClust and Meclust
are able to corroborate the results from [52] even with small amounts of data: ppkl
and pbd1 are statistically different (p-value = le —4 for both for 500 MC replicates).

We now show that ssClust can answer these questions “sooner” than Melust.
That is, the p-value (pV al) will be below the significance level with fewer unsupervised
examples. To quantify this concept, we introduce the “answering time” for algorithm

A

30
Ta = qﬂg’g{n:ﬂ <n < 30 and Hi{pVaIl[ka} Ea}:]}?
g=n

where here we use the notation

Dy == {Xig, ..., Xgk, (Xoog, Yoo r), ..., (Xiore, Yiorr) : k € {1,2}}

to be the labeled and unlabeled data.

The p-value constraint bears some explanation; it says that we require a significant
p-value for all datasets at least as large as with n unsupervised examples per line.
Note that here we assume our datasets are nested and that they all use the same

supervised examples. Since the answering time will be dependent on the datasets
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used, we perform a Monte Carlo simulation with 500 random sequences of datasets
and report the answering times for both ssClust and Mclust (cf. Figure 5.2). The
median answering time for ssClust is significantly lower than for Mclust (p-value =

4.7e-12 for paired Wilcoxon signed-rank test).

= — B Mcust
O ssCiust
2_
HER
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2_' —
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Answering Time

Figure 5.2: Frequency distribution of answering times for 5.1.1 given 500 MC repli-
cates.

5.2 Vertex Nomination

Consider a graph G = (V, E). Suppose that there is a labeling function on the

vertices, say

£:V =G,
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where C' = {red, blue, yellow, ...} is a set of colors on the vertices and red is the
color of interest. In vertex nomination problems, the structure of the graph is known
(i.e. G), but the images of only some (or none) of the vertices under the mapping
{ are known. The task is to nominate ambiguously colored vertices based on their
relative certainty of being red. Coppersmith [14] performs a recent review on vertex
nomination in the literature.

In our formulation of the vertex nomination problem, we can view it as a semi-
supervised clustering problem on graphs with only one cluster being of interest. In
order to apply the methods explicated in previous chapters of this thesis, we need to
produce real valued features for each vertex. Spectral methods have long been used
to embed graphs in B? with the aim of clustering (e.g. [17, 28, 42]) . For an excellent
tutorial on spectral clustering, see [53]. Using clustering for finding interesting vertices
in graphs through latent positions has been studied in other ways; for example, in
[30], we directly infer latent positions during a streaming doubly stochastic process.
Actually using the nomination list to modify the graph to fit some goal is a subject
of further study; in [39], we simulated the effects of a sequence of graph modifications
on expected terrorist attacks.

Fishkind et al. [20] compare spectral clustering to a likelihood based and to a gold
standard canonical clustering method on a special type of random graphs, stochastic
block models (SBM). In random graph models, V' is generally fixed, and the set E'is a

random variable. In a stochastic block model, there are a number of blocks (colors),
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much smaller than the number of vertices. Each vertex is in a block. Ewvery pair
of vertices independently has an edge with probability related only to their block
memberships. Formally, if there are K = card(C) blocks, A € RX*¥ is the link

probability matrix such that

P(u,v) € E|f(u) =i, £l(v) = j] = Aij.

Spectral clustering to recover the blocks in SBM graphs has been shown to be effica-
cious. [47]

The Random Dot Product Graph (RDPG) model is a related random graph model.
Each vertex v € V has a latent position z, € R?, where d is generally unknown.
Instead of a link probability matrix dependent on blocks, the link probabilities are
based on the latent positions. Suppose K : R? x R? — R is a kernel function and

g: R —[0,1] is a link function. Then,

P[(u,v) € E] = g(K(z, z,)).

If an SBM has as positive semi-definite link probability matrix, then it is a spe-
cial case of a RDPG model in which the latent positions of the vertices are fully
specified by their block memberships. RDPG models are well deseribed by spectral
embedding. [51, 50] Hence, spectral embedding on SBM graphs is often appropriate.

[49] Then, since the estimated locations in the latent space are strongly related to
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the block membership, a clustering in the latent space generally recovers block mem-
bership nicely. [32, 21] Finally, Athreya et al. [6] show that the scaled eigenvectors
(i.e. spectral embedding) of RDPG are approximately distributed as a mixture of
Gaussians. Hence, using model-based clustering in this setting is applicable.

In some vertex nomination applications, there may be partially labeled data with
additional information indicating that some of the vertices are red and some are not
red. For notational purposes, let the colors correspond to natural numbers. Only red,
the color of interest, need have an explicit correspondence: red = 1; further, we will
often refer to nodes in block 1 as being red. Thus, the aforementioned constraints
may be that #(v;) = 1 and #(v;) # 1. The second piece of a-priori knowledge is
clearly weaker than label information, as (vy) could be any other number (e.g. 2,
3, 4). We propose a model-based method that leverages the known constraints to
provide a confidence that a vertex is interesting. The overview of the ssVN method

is as follows:

1. ASE and elbow finder to get vertices as points in R?

2. ss-k-means++ for initialization

3. GMM with partially supervised data using Algorithm 5

4. Use the modified BIC of Section 3.2

First, we use Adjacency Spectral Embedding (ASE) on the adjacency matrix of
the observed graph to create d features for each vertex. To obtain the ASE, we take
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the SVD of the adjacency matrix, A = UXVT, and after choosing an appropriate
dimension d, set

X =V,82,

where V; € R™*? is the first d columns of V and Sj is the d = d diagonal matrix with
diagonal equal to square roots of the top d eigenvalues of A. Proximity in this latent
space indicates similarity. We choose d with the elbow-finding scheme of [61] if the
rank of the block probability matrix is unknown. On the other hand, if it is known,
we set d equal to that. Thus, we will use X to assign a cluster (color or block) label
to each vertex, where only the first cluster is particularly of interest, but a variable
number of other clusters are allowed in order to better explain the structure in the

latent space. We used our R package ssClust to perform the clustering steps.

5.2.1 Incorporation of Constraints

Now, we assume that we have additional information regarding the cluster mem-
bership of some of the vertices a-priori. Let Z; be the hidden block membership,
£(v;). If we know that some of the vertices are in our block of interest, we can set
Z; = 1 for those data, so that X; ~ fp . Further we know that some of the vertices

are not in our block of interest. Decompose {1,2,...n} =T + T" + T, where

T = {i : X; is known to be from block 1},
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T' = {i: X; is known not to be from block 1},

and

T°={1,2,...n} - T T

Then, we can decompose the likelihood of the complete data as

LO)xz=Y fi(z)

icT

¢ m
+> ) Zixlog (1 _kﬂl fi (3:1-))

icT" k=2

[
+ Z Z Z'i.,k lﬂg(ﬂkfk{xi]}

el k=1

(5.1)

The update equations for various constrained forms of Gaussian density functions are

available in [48]. Using these equations, we look for the Z; maximizing the complete

loglikelihood. Note that we actually obtain posterior probabilities of block member-

ships, and thus return only soft labels for most vertices.

5.2.2 Synthetic Data Example

To demonstrate the effectiveness of partially labeled GMM using smart initializa-

tion, we performed an experiment wherein there were 3 blocks, 20 examples of block

1, and an increasing number of examples of vertices known not to be in block 1 (ecall

these softly labeled vertices). The details of the simulation match the medium-sized
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Algorithm 5: Semi-supervised Gaussian Mixture Modeling

Input: X (n datapoints in R9)
T (set of indices of data known to be in block 1)
T" (set of indices of data known not to be in block 1)
g; € [i]™ (class of auxiliary cluster assignments into i clusters for
i=2,3,...,Cmnas)
M (set of models to consider)
Output: m* € M (chosen model)
£: X =+ {1,2,...,k} (cluster assignment mapping, where k is as
according to m*)
foreach m € M do
Let G be the number of clusters according to m.

Form the complete loglikelihood using equation (5.1)

Maximize the complete loglikelihood by using the E-M algorithm using g
as the initial class labels and starting with the M-step.

Let £, be the value of the maximized loglikelihood.

Let £,,; = argmaxke[clﬂkfk{zj] for j€TUT.

Let £, ; = argmax,.(os  oyMefi(z;) for j € T

Let {,;,=1forjeT.

10 Let BIC,, =2L,, —d, log(n).

11 Let m* = argmax, ,, BIC:,.
iz return m*, £,

1
2
a Let fi be the kth component of the mixture according to m.
4
5

=T I -]
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experiment in Section 7 of [20].
b 3 4 bS5 .5

let A7=|3 8 glandAa= |5 5 5

4 6 3 T T
The block link probability matrix is given as

A= .3A; +.7TA,,

where the first matrix is regarded as the signal and the second as noise which serves
to occlude the distinctiveness of the blocks. Figure 5.3 depicts example realizations
of a pure (signal-only) and occluded SBMs as used in this experiment. Finally, we
varied the number of softly labeled (i.e. known not to be from block 1) vertices from
0,5,10,...,100.

Due to the fact that vertex nomination entails submitting a list of vertices in order
of likelihood of being red, we would like to use different performance metrics than in
our other experiments. Suppose that z; is the i** vertex in the nomination list. For
example, z; is the vertex estimated to be most likely to be red. Note that we will
exclude the 20 known red vertices from all performance metrics. Recall that £(z;) is
the block number of vertex i.

First, we will use mean average precision at k (for & equal to the number of vertices
in block 1 that have not been pre-labeled), which which for ¢ Monte Carlo replicates

ism(k) =137, (% ELI 1{l(z;) = 1}) . Figure 5.4 shows the mean average pre-

95



CHAPTER 5. APPLICATIONS

sl
Do rreafeiiena: 520 x 520

(a) B=M\y

Figure 5.3: Realizations of SBM with their respective inter-block probability ma-
trices, B.

cision as a function of the number of partially labeled vertices for ¢ = 100 Monte
Carlo replicates. As expected, more partially labeled vertices improves performance.
Compare this to the unlabeled table of mean average precision values in Section 7
of [20], where the mean average precision of the most comparable method (ASE +
k-means without supervision) is 0.7330.

Next, we show the probability of #(x;) = 1 for most of the vertices whose block
is unknown. After 200, we would like to see the numbers drop rapidly. Figure 5.5
depicts these probabilities with three different levels of partial supervision (i.e. more
vertices are known not to be red). Note that the curve becomes more sigmoidal with
increased supervision, indicating improving performance.

For comparison, refer to Figure 5.6, which is the same plot for 100 Monte Carlo
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Figure 5.4: Mean average precision as a function of the number of vertices known
not to be red. Shading represents + 2 standard errors.

replicates with two different algorithms. The first is a canonical sampling scheme
which estimates the posterior prbablitlity of block membership in the natural MCMC
extension of the canonical method of [20]. We set the number of samples and number
of burn ins to 10%. The other is ssVN without using semi-supervised GMM after the
ss-k-means++ initialization. Note that using GMM improves performance drasti-
cally. The comparison method implementations are in MATLAB. Thus, while the

simulation details are the same, the runtimes are incomparable.

5.2.3 Youtube Dataset

In this section, we demonstrate the efficacy of our algorithms on a real data

application with dubious block-model structure.
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Figure 5.5: Probability of the vertices appearing in the nomination list of being

in the block of interest. Higher numbers for low values on the abscissa are better.
Only 200 vertices are in the block of interest. Color indicates the level of partial
supervision:

rec: 0 partially supervised vertices

creen: 40 partially supervised vertices

blue: 100 partially supervised vertices

We downloaded the original data from [57], who curated the scrapped data of [40]
to include users in the top 5000 “highest quality” communities on the popular cat
video website Youtube.com. By considering users as nodes and their friendships
as links, we can form an undirected graph with up to 1134890 nodes and 2987624
edges. We trim the full graph to only include users from the top 5000 communities,
resulting in 15151 nodes. We further trim the graph to include only the top 5000

nodes of highest degree.

We now perform two final operations that trim down the number of nodes and
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Figure 5.6: Probability of the vertices appearing in the nomination list of being
in the block of interest. Higher numbers for low values on the abscissa are better.
Omnly 200 vertices are in the block of interest. We provided no supervision of the type
“known not red.”

edges significantly. Due to this, we call this dataset YoutubeEasy. Next, we delete
nodes that are part of communities of size less than 20. Finally, the nodes of 0 degree
in the resulting graph are dropped (since thousands of nodes are deleted, their edges
contribute to some of those in the top 5000). The final graph is of size 420 nodes and
422 edges.

We tabulate node membership in the top 5000 communities; community “46” was

the largest, with 62 members. We deem this the red community, and all nodes with
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membership in the red community are red. Every other node is blue.

We take 20 red members and 20 blue members as seeds. With these “ground
truth” labels, we can then proceed to apply canonical sampling and ssVN. Due to
how sparse the graph was, we often sampled seeds that could not estimate the inter-
block link probabilities. Thus, we used the empirical A from the ground truth labels.
This is unrealistic, but so is how sparse we made this graph. As a final detail, noting
that the canonical sampling scheme is a MCMC method in which we can set the burn-
in and/or number of samples, we estimated the number of samples and burn-ins such
that the run-times (reported in seconds) are approximately equal for both methods
(samples=burn-ins=3.5 x 10%).

With 100 Monte Carlo replicates using uniformly random seeds, we see that ssVN
outperforms canonical sampling in terms of mean average precision (cf. 5.7). We
observed that one seed in particular, the vertex of the highest degree, is important to
include. Thus, we repeated the experiment conditioning on this vertex being included
always as a seed and once again never being included as a seed (cf. Figures 5.8 and
5.9). Remarkably, ssVN always does well, but canonical sampling is more dependent

on the seeding.
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Figure 5.7: Average probability of being red for each position in the nomination list
for YoutubeEasy data. Seeds are random.

5.3 Conclusions

In this chapter, we present two interesting applications to perform semi-supervised
clustering in. First, we identified behaviotypes in a fly larvae dataset earlier than
a non-supervised method. Meaningful behavioral groups as derived from a similar

method are used for supervision information, and more finely detailed groups are
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Figure 5.8: Average probability of being red for each position in the nomination list
for YoutubeEasy data. Seeds must include vertex of highest degree.

discovered subsequently.

Second, we briefly introduce the topic of vertex nomination and perform a sim-
ulation study on a relatively challenging generative distribution. We demonstrate
how an additional, weaker type of supervision can help to identify members of the
block of interest. Also, we showed results from two similar methods; canonical clus-

tering is superior in accuracy with good seeding and worse with bad seeding. ASE
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Figure 5.9: Average probability of being red for each position in the nomination list
for YoutubeEasy data. Seeds never include vertex of highest degree.

+ ss-k-means++ is strictly worse in accuracy (albeit faster as it does not involve

parameter estimation from GMM).
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Chapter 6

Conclusions

Pretty good is great!

Carey E. Priebe

In this final chapter, we summarize the entire thesis and suggest some future work.

6.0.1 Summary

This dissertation focuses on the general problem of semi-supervised clustering,
where the goal is to partition a collection of objects into groups using some exogenous
information regarding to which groups some of those objects belong. In Chapter 1, we
begin by briefly explaining this problem’s relationship to the other common machine
learning tasks of classification, semi-supervised learning, and clustering.

After explicating the role of the problem in the field, we gave some gentle intro-
ductions to the common clustering algorithms of hierarchical clustering, k-means, and
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model-based clustering in Chapter 2. We expounded upon the most famous modifica-
tions other researchers have made to these algorithms to handle the semi-supervised
case.

In Chapter 3, we focus on model-based semi-supervised clustering. We re-derive
the complete log-likelihood, E-step, and M-step for semi-supervised Gaussian Mix-
ture Modeling, which has previously been done in the literature. We then give a
derivation of a modified BIC that does not penalize for supervised data, possibly al-
lowing for additional complexity to be chosen. We note that this derivation was O(1)
equivalent to the standard BIC and discussed how such a difference can matter in the
finite sample case. We gave some general analysis of the probabilities and followed
this with an illustrative toy example where we can tweak several parameters to ex-
hibit that a O(1) difference in information criteria can lead to mistakes with varying
probabilities. Finally, we tie our analysis of (1) differences in information criteria
to semi-supervised clustering through a simulation study, where we demonstrate that
choosing to penalize less leads to statistically significantly improved performance over
the standard BIC in our example.

In Chapter 2, we note that hierarchical clustering does not lend itself to precisely
our setting; for this reason, we do not use it for any of our experiments despite it be-
ing used in the software upon which our R package, ssClust, is based (i.e. Mclust)
for initialization purposes. Thus, we require another algorithm to warmstart our

semi-supervised model-based clustering implementation. For this reason, in Chap-

105



CHAPTER 6. CONCLUSIONS

ter 4, we introduce the semi-supervised k-means++ (ss-k-means++) algorithm and
compite theoretical bounds on its optimality under certain supervision assumptions.
We include some experiments comparing the performance of (ss-k-means++) to some
similar semi-supervised k-means algorithms and noted improved performance under
a variety of metrics that scaled with the level of supervision.

Armed with our initialization strategy (i.e. using the labels from ss-k-means++),
we are finally prepared for applications tying the whole method together. In Chapter
5, we begin with a clustering problem dealing with behavioral groups in fly larvae
induced by different optogenetic lobotimizations arising in a recent Science paper.
We use some supervision derived from their hierarchical clustering and observe that
we can detect differences in lines faster than the non-supervised method. Further, we
are able to reconstruct line information relatively well for this challenging problem.

Finally, we introduce the general problem of vertex nomination of interesting
vertices in random graphs as another practical application. Using the literature to
justify our feature generation and clustering strategies, we lay out a procedure for
vertex nomination. We use the simulation scheme of a recent paper on vertex nomina-
tion, which includes several competing strategies, in order to compare our empirical

results with theirs. We do pretty well and are pretty fast.
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6.0.2 Future Work

Pairwise constraints are sometimes used instead of hard label information. In
fact, pairwise constraints can completely specify the latter. Thus, moving our semi-
supervised setting to use pairwise constraints would make it more general. If we were
to adapt our algorithms to this more general setting, we would be able to apply it to
richer datasets with a larger variety of supervised information.

Our analysis in Chapter 4 is based on the seminal work on randomized D? weight-
ing k-means algorithms; since then, there have been advancements to these algorithms
that improve performance and/or scalability substantially. It seems likely that anal-
ogous results for the semi-supervised case could be derived in the semi-supervised
setting.

Finally, we have not, but would like to characterize when our semi-supervised
vertex nomination procedure is better than the competing methods in the literature,
as performance appears to vary based on the signal in the graph and number of
vertices. In particular, the “gold standard” method of canonical sampling as analyzed
in [20] is very slow, but can naturally be halted early. By varying allowable run-time,
we could compare practical implementations of canonical sampling to our method on

more interesting datasets.
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