The MUSART Testbed for Query-By-Humming Evaluation

Roger B. Dannenberg, William P. Birmingham, Georgél' zanetakis, Colin Meek, Ning Hu, Bryan Pardo

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA
+1-412-268-3827
rbd@s. cnu. edu

Abstract

Evaluating music information retrieval systems is
acknowledged to be a difficult problem. We have
created a database and a software testbed for the
systematic evaluation of various query-by-humming
(QBH) search systems. As might be expected,
different queries and different databases leadidi® w
variations in observed search precision. “Natural”
gueries from two sources led to lower performance
than that typically reported in the QBH literature.
These results point out the importance of careful
measurement and objective comparisons to study
retrieval algorithms. This study compares search
algorithms based on note-interval matching with
dynamic programming, fixed-frame melodic contour
matching with dynamic time warping, and a hidden
Markov model. An examination of scaling trends is
encouraging: precision falls off very slowly as the
database size increases. This trend is simple to
compute and could be useful to predict performance
on larger databases.

1 Introduction

Department of Electrical Engineering and
Computer Science
University of Michigan
Ann Arbor, M| 48109-2110
+1-734-936-1590
wpb@ecs. um ch. edu

added files to our databases, and improved our éhem
extraction software. With so many variables, it wasplest to
hold constant a collection of data and programsriter to
focus on one or two experimental variables.

After following these procedures for a year or twe, found it
increasingly difficult to compare systems. They Hachply
become incompatible. We feel that this state adiedfin our
microcosm mirrors the state of the field in gene(Bownie,
2002; Futrelle & Downie, 2002) Many results arélished
(Ghias, et al., 1995; McNab, et al., 1996; Pauvi®)2?, but
evaluation is difficult, and results are not congide.

To remedy this situation, at least in our own redegroject,
we created a general testbed that is capable ¢hboall our
work on content-based retrieval. The testbed iredud
collections of queries, target data, analysis saftyw and
search algorithms. We have integrated several ofesearch
systems into this testbed and are able to comparsyistems
objectively. Some of our data can be shared, andamealso
evaluate algorithms for other researchers usingestbed.

In the next section, we describe the architectfieiotestbed.
Then, in Section 3, we describe three differentdeaystems
we have studied. In Section 4 we present sometsesftibur
algorithm comparisons. Section 5 discusses the rgene
sources of error we observed. In Section 6, weudisadhe

The MusARTproject is a collaboration between the Universityissue of search performance as we scale to lamgfabases.

of Michigan and Carnegie Mellon University. Togethee
have been exploring the design of query-by-humnsiysiems
(Birmingham, et al., 2001; Hu & Dannenberg, 200ZeW &
Birmingham, 2002; Pardo & Birmingham, 2002; Shifrét al.,
2002). We have developed a variety of algorithmsetaon

Section 7 presents some discussion and conclusions.

2 The Testbed Architecture

The MusARTtestbed is hosted on a Linux server and relies on

Markov models, hidden Markov models, and contourSCripts written in Python to conduct experimentse Tse of

matching. In addition, we have implemented seveeasions

Python makes it easily portable to other operasggtems.

of note sequence matching algorithms using dynami@ur goal is that complete tests should run fromt $tafinish

programming.
As our research progressed, it became expedienprigect

members to adopt their own data and methods. As w
developed and implemented search algorithms, we al

created new signal-analysis software, collected geeries,

Permission to make digital or hard copies of allpart of this work for
personal of classroom use is granted without fegiged that copies are no

made or distributed for profit or commercial adweayg and that copies bear

this notice and the full citation on the first pagé 2003 The Johns Hopking
University.

without manual intervention. A typical test stamsth a
collection of audio queries, a database of targHDIMiles,
and a variety of programs to process audio, progdBs, and
earch the database. The output of a test inclatdistical
nformation about the search results in text araphical plot
formats. All input and output data can be viewemgis web
browser so that researchers (currently in Pennsidya
Michigan, and Washington) can have convenient actesall
results from all tests.

In order to support different systems, includingrimas
preprocessing stages, we adopted the model shokigune 1.

In this model, the input to the system consists'qpferies”
(generally an audio recording of someone singingedody)
and “targets” (generally MIDI files to be searchedje have a
number of collections of queries and targets, whiehstore in
a hierarchical directory structure. For any givesttrun, we
describe the queries and targets of interest &sdffilenames.
This allows us to reproduce our results even if fidee are
added to the database.

I >

Target
Collections

Query

Collections
(lists)

(lists)

preprocess

preprocess

Target
Repr.

Query-To-Target
Answer Key

Compare |«

Search
Results

Figure 1: Architecture of the Musart Testbed.

Algorithms

In addition to queries and targets, we have intdiate
representations. For example, most search systemsext
qgueries to transcriptions stored as MIDI files or pitch

contours stored as data in text files. We usuakg the
“Thematic Extractor” to obtain themes from targelDMfiles

and search the themes rather than the full MIQje&file. Our
scripts will automatically generate these interraggli
representations if possible. It is also possible ingort

intermediate representations as files when theisiraction is
not fully automated.

Our system needs the correct target(s) for eachyqte
evaluate search performance. We keep a file foh epery
that lists all the correct targets, since there rbayseveral
versions of a song in the database, appearing esrate
different targets. When reporting rank order, wporé the
lowest ranking correct target.

Tests of search systems are saved in a “resultgctdry.
Search programs take one query and a list of ®mrgatd
generate “match scores” indicating how well the rgue
matches the target. The test script collects thelt®and sorts
them to calculate the rank order of the correcyatar The
script produces an easy-to-parse text output susnrf@r
further analysis. The output includes:

« The name of the queries collection file
« The name of the targets collection file
» The search algorithm and any command line opticesl u

The output format assumes full searches in whiehgiery is
compared to every target in the database, but itldvbe
relatively simple to change this assumption andrretess
information.

3 Description of search systems

The primary goal of our testbed is to enable object
comparisons between different search methods. We ha
focused on our three best-performing algorithmse Tinst
applies dynamic programming string-matching aldni$ to
match sequences of pitch intervals and IOl rafid®e second
applies dynamic time warping algorithms to compaedodic
contours. The third uses a hidden Markov modeldrmoant
for differences between queries and targets. Wertepsults
from the best configurations of our algorithms. NVitwo
query transcription systems, two theme finders, amthy
variations in the search algorithms, the spaceos$ibilities is
quite large.

3.1

The Note-Interval system relies on a query trabserito
estimate note onset times and pitches in audioiepieBoth
targets and queries are then transformed into segseof
note-intervals, each of which consists of a pitterval and a
rhythmic interval. Pitch intervals are quantizedtte half-step
and range from —12 to +12 half steps. Rhythmicruatis are
represented as one of five log-spaced Inter Ornsietrval
Ratio (IOIr) values (Pardo & Birmingham, 2002). §hi
encoding is both tempo-invariant and transpositivariant.
Once encoded, targets are ranked by similarityhéoquery.
Similarity is given by the minimum cost of transfing a
target into the query using three editing operatiansert a
note-interval, delete a note-interval, and subtgtita note-
interval in the query for a corresponding one ie thrget.
(Pardo & Birmingham, 2002; Pardo, Birmingham, & f8hi
2003) Both insertion and deletion are fixed-coseragons.
The reward (or cost) of substituting a query notesival for a
target note-interval is based on the similarity tbé note
intervals. Reward decreases exponentially withadist in
either 10Ir or pitch-interval.

3.2

The melodic-contour matcher is based on the idetwhile
pitch estimation is not too difficult, segmentatioo notes is
very difficult and error prone. A segmentation erro
corresponds to a note insertion or deletion in +hateed
approaches, and at least in some cases this sedmasatmajor
source of errors. In the melodic-contour approddhzzoni &
Dannenberg, 2001), time is divided into equal-lanfyjames
and the fundamental frequency of the query is eg#ch in
each frame. Similarly, the target melody is sptitoi equal-
length frames, ignoring note boundaries. Dynamimeti

Note-Interval, Dynamic Programming Search

Melodic-Contour, Dynamic Time Warping Search

« The query preprocessor and any command line optiondarping is used to find a good alignment of thergue the

used

e For each query: the match score for each targettlzend
rank order of the correct target.

e Statistics: mean rank, average deviation,
deviation, and a histogram of ranks.

standar

target. Transposition is handled by folding alth#s into one
octave and running each search with 24 differenatrtgu-step
transpositions. The primary difference between thatcher
nd the Note-Interval matcher is that this oneraligqual-
uration frames rather than notes. Furthermore,cthdour
representation is not invariant to transposition tempo
change.

3.3 Hidden Markov Model Matching

Johnny Can't Sing (JCS) (Meek & Birmingham, 200®keek

& Birmingham, 2002b) is a hidden Markov model maich
that uses a distributed state representation toembdth

“cumulative” and “local” error. This means thakdithe note-
interval approach, JCS explicity models changegeimpo

and pitch-center, and like the melodic-contour apph,

models errors that have a purely local effect anphch and
rhythm of the query. A note-based approach, werpmate

the notion of fragmentation and consolidation (Meag &

Sankoff, 1990), but the state model also suppotbétrary

gaps in the query and target with low probability.

4 Results of Comparisons

We have conducted tests with different sets of iggeand
databases. In all of the work reported here, theeee no
special instructions for singers (such as singtagtd ta”) and
all targets are fully polyphonic MIDI files whichre
automatically processed to extract themes. The §ies of
queries is relatively high in quality, meaning thia¢ queries
follow the melody and rhythm of the target songd ahe
recordings are of good quality (i.e., no drop artgxtraneous
noise). We have found in previous studies thatadgorithms
perform quite well when the queries are high qualive also
collected new, larger sets of queries of lower ifypabnd

found that, with these, the search performance bf a

algorithms was much worse. Below, we compare tkese of
gueries. We then compare our three algorithms.

All of our algorithms return an ordered list of dats, from
best match to worst. The rank of the correct answihin the
list is also computed. To summarize performance,caent
the percentage of answers at rank = 1, rmrik or ranks< 3.
We also compute the MRR (mean reciprocal rank). NMRR
is the average value of 1/rank, a value in theedhtp 1, with
higher numbers indicating better performance. Top§fy
reporting, we scale the MRR to the range 0 to 100.

4.1 The “High-Quality” Queries

Five queriers, two musically trained, sang congélexcerpts
from ten well-known folk songs, yielding a databagel60
gueries. The HMM search system was tested agaimsisaive
database of 10,000 synthetically generated tamgétsa mean
length of 40 notes (plus the ten folk-song targetsd in the
gueries) in order to test scalability, given quernellected in
ideal circumstances. The singers were — for thet pag —
familiar with the folk songs, and sang only contige
portions of those songs. Using the full HMM mods9, out of
80 queries (the other 80 were used for trainindurned
correct targets ranked first, with an MRR value7&f The
distribution of ranks is shown in Figure 2. For tleenaining
data sets, JCS is used with default parameters,naitraining.

The point of this test is to establish that goodgrenance can
be obtained under reasonable conditions, nametycireries
are fairly in-tune sub-sequences of the targetsthin next
section, we will see that performance is highly etefent
upon queries and databases. This is one of thengdkat our
testbed is so important for our research.

8%

o1

m2-10

9%
@ 11-100

5% | 101-1000

W 1001-10000

74%

Figure 2: Distribution of ranks for the HMM searalgorithm
on "high quality queries”.

4.2

We have two more collections of queries that tuab to be
more difficult than the folk song queries. Queryt Sewas
collected from 10 subjects with no vocal traininhomvere
presented 10 Beatles songs. After hearing a song, aach
singer was asked to sing the “most memorable” portif the
piece. No instructions were given as to whethey tigould
sing lyrics, and subjects varied in this respeabjé&cts were
free to try again, if they felt their first attempias bad for
some reason. In many cases, subjects made moreoti@n
attempt, so there are 131 queries in all. While tnadsthe
queries are recognizable, many of them do not spoed
very well to the actual songs (as judged by theharst
listening to the queries). Subjects often skippemmf one
section to another, creating melodic sequences dbahot
exist in the actual song. It is interesting to nthat these
fabricated sequences are often completely convjnaimd do
not seem to confuse human listeners. Many singare mild
to severe intonation problems and many added esipees
pitch bends to their singing, which complicates enot
identification. Some queries contain noise causetbbching
the microphone, and some contain bits of self-consc
laughter and other sounds.

Query Set 2 was collected from a larger numberubjexts.
As a class project, students were recruited tordet® queries
each from volunteers, resulting in a collectionl6b usable
queries. These are all sung from memory and suffan

many of the same problems as Query Set 1.

A preprocessing step (Meek & Birmingham, 2001) aots
approximately 11 short “themes” from each targetgsim the
database. In all of our systems, search is perfdring
comparing the query to each theme from a song. The
similarity rating of the best match is reportedtzes similarity
rating of the song. These ratings are then soxedotpute

the rank order of the correct song.

Table 1 shows the results of running Query Set dinat a
collection of 258 Beatles songs, for which there arotal of
2844 themes. It can be seen that the matchersgaiécantly
different in terms of search quality. At least wikiese queries,
it seems that better melodic similarity and errardels give
better search performance.

Table 2 shows the results of running Query Set &nat) a
collection of 868 popular songs. The total numbethemes
in this database is 8926. All three algorithms genied better
on this data than with Query Set 1, even thoughetlae

The “Ordinary” Queries

many more themes. Unlike in Table 1, where the rittyos

seem to be significantly different, all three algans in this

test have similar performance, with an MRR of ali&ut The

Note-Interval algorithm is about 100 times fastbart the
other two, so at least in this test, it seems tthbebest, even if
its MRR is slightly lower.

Search Algorithm =1 | <2 | <3 | MRR
Note-Interval 8.4% 12.2| 13.0| 134
Melodic-Contour 15.3] 19.1| 21.4| 21.0
Hidden Markov Model 20.6 | 26.7 | 29.0| 27.0

Table 1: Percentage of correct targets returned bélow
ranks 1, 2 and 3, and Mean Reciprocal Rank (MRRYiaery
Set 1. MRR is reported on a scale from 0 to 100.

Search Algorithm =1 <2 | <3 | MRR
Note-Interval 21.3% 27.1| 31.6| 28.2
Melodic-Contour 27.7| 32.8332.9| 329
Hidden Markov Modell 25.8 | 30.3| 32.9| 31.0

Table 2: Percentage of correct targets returned bélow
ranks 1, 2, and 3, and Mean Reciprocal Rank (MRR) f
Query Set 2.

The fact that the Note-Interval algorithm works Miel this
test deserves some comment. In previous work, wapaoced
note-by-note matchers to contour- or frame-basetchmes

and concluded that the melodic-contour approach w

significantly better in terms of precision and le¢®azzoni
& Dannenberg, 2001). For that work, we experimenigith
various note-matching algorithms, but we did notifone that
performs as well as the contour matcher. Apparetiily note-

assumes reasonably good queries, and more wosdetded to
help the average user create better queries.

Bl Good Match
B Partial Match
OOQut-of-order or

repetition
ONo Match

Figure 3: Distribution of query problems. We judgedy
about half the queries to have a direct correspurwlto the
correct target.

6 Scaling to larger databases

Our experimental algorithms are computationally deding,
so we have limited our studies to medium-sized lieeas.
The Beatles database used with Query Set 1 hasth8dies
extracted from 258 songs. The database used withy(Ret 2
has 8926 themes extracted from 868 songs. Themas dra
average of about 41 notes.

Regardless of the algorithm, an interesting questalways:
How do the results scale as the database growsrfa@ne
way to explore this question is to use the sintjascores to
simulate databases of different sizes without digtuee-
running the search.

aLet us assume we have a table of melodic distacmees for
6 queries and T target${q,t) (where 0 q < Q, and (kt<
T) is the distance of the best match of qugty targett. We
also have a list of correct targeféq) for each query. Now,
suppose we want to simulate a database of size Nfer

some queryy. We construct a “random” database by inserting
the correct targe€(g) and N-1 random choices from the set
{0...T-1}-{C(g)}. We can compute the rank of the correct

matching approach is sensitive to the relative wisigjiven to
duration versus pitch, and matching scores aresassitive to
the assigned edit penalties. Perhaps also thiofsqtieries

favors matchers that use local information (intészand ratios)
over those that use more global information (erm@etours).

5 Sources of error

We have studied where errors arise in these sedgohithms.
As mentioned, the major problem is that many mesdi
presented in the queries are simply not presetharoriginal
songs. In Set 1, only about half were judged tocmahe
correct target in the database in the sense thatdtes of the
melody and the notes of the target were in cornedgoce.
(See Figure 3.) About a fifth of the queries pditimatched a
target, and a few did not match at all. Interedyingbout one
fourth of the queries matched material in the adrtarget, but
the query contained extra repetitions or out-ofeorghrases.
An example is where subjects alternately hum a dyeénd a
countermelody, even when these do not appear asiaghe
voice in the original song. Another example is vehsubjects
sing two phrases in succession that did not odtatr way in
the original song. Sometimes subjects repeat phithse were
not repeated in the original. Ultimately, querynymming

target in such a random databdeby counting how many
entries in the database have a lower score thasdiwe for
the correct target:

rank = 1 + |k x O R andS(g,x) < Sq,C(q))}|

This gives us the rank for a particular random loiasaR, and
we would need to run this simulation many timegstimate
the expected rank.

In practice, we want to consider all queries (st the single
queryq) and we want results for all sizes of databasesder

to study the trend. To accomplish this, we “grot& trandom
database for each query. Initially, each query'wls@se has
only the correct target. Then we grow each databgsene

target selected randomly from the targets not gpetutded.

Each time we grow the database, we compute the euntb
correct targets at rank 1, rank 2, etc. These ntsnten then
be plotted as a function of database size as iar&id, which

is based on Query Set 1 and the Melodic-Contouckea

Retrieval Rates vs. Database Size Scaling Models
100 —1-Log
o 1) — Power Law
— T 80 _
g o 1-Log 1/Log
= § —Rank 1
[o 601 — Constant+Random
2 = *
-“:’ g \ Power Law — Random Guess
b 40
& - e——
<, | Constant+Randa ~
&
. Random Guess L/Log
Database Size 0 200 400 600 800 1000
Database Size

Figure 4: Number of targets ranked 1 (bottom cyr@e)r less, Figure 5: Various models of database scaling wiitseoved
3 or less (top curve), and MRR (triangles) as ation of data for Rank 1.
database size.

Figure 6 is similar to Figure 4, but it plots theRR from all

Note that the function becomes flat, indicating tih& number !)
three search systems using Query Set 2. This @&t@ss to

of correct answers does not fall off rapidly as dia¢abase size :) t
increases. Various functions could be used to afpate and ~ confirm the general 1/log(N) scaling trend. At leas our
extrapolate the observed data. Figure 5 shows thek R limited examples, the scaling trend seems to bepiaddent of

curve together with various candidate models ofrcgea the setof queries, the database, and the segufitiaim.
performance as a function of database size. This data shows that mean rank is not a good measur
The simplest model is that the search procedurplginaturns ~ Performance. For example, a ranker that returnsctreect
a random guess. The expected number of correcttgesu answer ranked®1half the time and ranked 10®alf the time
rank 1 is y = Q/N, wherg is the number of correct targets IS & better perforrrs1er that one that returns thetr'amswer
returned with rank 1, Q is the number of queries] i is the randomly between®land 108, even though their mean rank
database size. This rapidly converges to zero sdpioor fit IS the same. Figure 7 shows a histogram of ranksmed
to the data (as one would hope!). A slight modifmato this from Query Set 1. There is some significant fractiof
has a set of queries where the search is perfegardless of “correctly matched” results with very low ranks,thhe rest
database size, combined with another set of quediese the ~ (queries for which no good match was found) areoaim
search is ineffective and returns a random guedwe T randomly distributed. The mean rank is the “cenfegravity
corresponding equation is y #(@-c)/N, for some constant c. of this histogram, and it will obviously grow withe database

Note that in this model, the searches that realprk” are Size. On the other hand, the number of low-rankingect
independent of the database size. This model, ddbel targets will remain nearly constant as shown inuféga. In
“Constant+Random” in Figure 5 converges more rapidl these tests, the MRR seems to be highly correlaidéd the

the constant ¢ than does the observed data. Anptesible proportion of correct answers ranked in the top twthree.
model is a power-law model: y ="N The corresponding
curve (labeled “Power Law”) is not as “flat” as thbserved
data. A function that flattens quickly is the loigfam, so we MRR

tried two forms based on the log(N). The equatiorFy 100

Q(1-cllbg(N)) does not conform to the observations (see thg = 80

“1-Log” curve), but the equation y 3/log(c,M) fits the data § 60

reasonably well, albeit with two parameters (see‘ttiLog” o Melodic Contour HMM
curve). Of course, there is no proof that we camagwlate x 407

this function to predict behavior with larger daabs, butitis | Z ,, Note-Interval
encouraging that the function decreases slowly.dxample, o

to reduce the number of correct results at rank this model
by half, the database size mustsq@ared. 0 200 400 600 800 1000
Database Size

Figure 6: MRR as a function of database size fareh
different search algorithms. All three follow thense general
1/Log trend.

Frequency (Rank 1 to 15)

50
40 1
30 1
20 1
10 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Rank

Frequency (Bin Size = 100)

100

80 - M Note-Interval
O Melodic-Contour

OHMM

60

40 1

20

0 ﬂllﬂj]ldlllﬂﬂ#u

100 200 300 400 500 600 700 800 900
Rank

Figure 7: Histograms showing how correct targeg¢sranked
for each of the three systems using Query Set @ .upiper
histogram shows details of the first 15 ranks. bveer
histogram includes all of the data, but with labjes of 100
ranks each.

7 Summary and Conclusions

It is widely understood and agreed that betterwatan tools
are needed in the field of Music-Information Retak We

have constructed a Query-By-Humming testbed to usal
and compare different search techniques. The &$tblps us
to organize experiments by providing explicit reygetations
and standard formats for queries, targets, cotlestisubsets
of queries or targets), preprocessing stages, lsadgorithms,

and result reporting. A single command can run mpete

test, including the preprocessing of data, seagcfina set of
queries, and generating reports. Most of our testheluding

some of the databases is available to other rdsemrcand we
can also collaborate with other researchers by naddiew

search systems into our testbed. Please contaauthers for
information about formats and APIs.

We have compared three algorithms for music sedneh
have been reported previously, but never comparedhead-
to-head” fashion. The Note-Interval algorithm teeatusic as
sequences of pitch intervals and IOl ratios, ardches for an
alignment that minimizes a distance function. ThentGur-
Matching algorithm, a variation of string matchirdpes not
segment the query into notes, but uses dynamicwarping
to find the best match to melodic contour. The HMM
approach matches notes using a probabilistic emodel
intended to account for the kinds of errors obsgivequeries.

The contour-matching and HMM algorithms are extrigme
slow, taking on the order of 2 seconds of compaitatime per
entry in the database, which translates into daysrdime for

many of our tests. While this may be impractical foany
tasks, we believe it is important to discover thesthsearch
techniques possible in terms of precision and redhtil
quite recently, these algorithms seemed to outperfall
faster approaches. However, at least on Query Seiuf
current Note-Interval system delivers similar sbaguality
with a run time of about 0.02 seconds per entthéndatabase,
making it the clear winner in our comparison. lastingly,
the HMM and contour-matching approaches do not nth&e
same mistakes, so returning the top choice of eashperior
to returning the top two choices of either algarith

Our work shows a wide range of performance accgrtirthe
quality of queries. When queries contain a reasgnking

sequence of well-sung pitches, search algorithmsbeavery
effective. On the other hand, when we collectedrigaefrom

general university populations (which, if anythingight be
expected to produce better queries than the ovawalllation),
we found many queries that were very difficult tatoh. The
wide range in performance of our systems on diffecpiery
sets should serve as a warning to researcherarpenfce is
highly dependent on queries, so nho comparison ssipke
without controlling the query set.

Finally, we propose that the issue of scaling wiabase size
can be studied by simulation. Given distance orilarity

estimates between queries and targets, we can thiot
expected number of queries whose correct targells bei

ranked 1 (or in general, less than some répkFor our
algorithms, we found that a 1/log(N) model givegasonable
fit to the observed data. This is encouraging bseathis
function becomes flat as the database size ingease

Acknowledgements

We gratefully acknowledge the support of the Nadtlon
Science Foundation under grant 11S-0085945. Theiops in
this paper are solely those of the authors and db n
necessarily reflect the opinions of the funding reges.
Thanks to Dominic Mazzoni and Mark Bartsch for iadit
implementation of some testbed components. Thankdhee
Kiat, Crystal Fong, and David Murray for help wittata
collection and analysis.

References

Birmingham, W. P., Dannenberg, R. B., Wakefield, K5,
Bartsch, M., Bykowski, D., Mazzoni, D., Meek, C.,
Mellody, M., & Rand, W. (2001). "MUSART: Music
Retrieval Via Aural Queries.International Symposium
on Music Information Retrievapp. 73-81.

Downie, J. S. (2002). "Panel in Music Informatioetieval
Evaluation Frameworks."ISMIR 2002 Conference
ProceedingsIRCAM, pp. 303-304.

Futrelle, J., & Downie, J. S. (2002). "Interdisaigiry
Communities and Research Issues in Music Informatio
Retrieval."ISMIR 2002 Conference Proceeding2CAM,
pp. 215-221.

Ghias, A., Logan, J., Chamberlin, D., & Smith, B.(C995).
"Query by humming - musical information retrievalan
audio databaseProceedings of ACM Multimedia 9pp.
231-236.

Hu, N., & Dannenberg, R. B. (2002). "A Comparisoh o Mongeau, M., & Sankoff, D. (1990). Comparison of $aal
Melodic Database Retrieval Techniques Using Sung Sequences. In W. Hewlettet al. (Eds.), Melodic

Queries." Joint Conference on Digital Libraries Similarity Concepts, Procedures, and Applicatigiv®l.
Association for Computing Machinery. 11). Cambridge: MIT Press.

Mazzoni, D., & Dannenberg, R. B. (2001). "Melody teleing Pardo, B., & Birmingham, W. P. (2002, , October 1173-
Directly From Audio." 2nd Annual International "Encoding Timing Information for Musical Query
Symposium on Music Information Retrievaloomington: Matching."ISMIR 2002, 3rd International Conference on
Indiana University, pp. 17-18. Music Information RetrievalRCAM, pp. 267-268.

McNab, R. J., Smith, L. A., Witten, I. H., Hendemns&. L., & Pardo, B., & Birmingham, W. P. (2002). "Improvedogz
Cunningham, S. J. (1996). "Towards the digital musi Following for Acoustic PerformancesProceedings of
library: Tune retrieval from acoustic inputProceedings the 2002 International Computer Music Conferensan
of Digital Libraries '96 ACM. Francisco: International Computer Music Association

Meek, C., & Birmingham, W. P. (2001). "Thematic Pardo, B., Birmingham, W. P., & Shifrin, J. (2003Name
Extractor." 2nd Annual International Symposium on that Tune: A Pilot Studying in Finding a Melody rfinoa

Music Information Retrieval Bloomington: Indiana Sung Query." Journal of the American Society for
University, pp. 119-128. Information Science and Technologiy review).
Meek, C., & Birmingham, W. P. (2002a). "Johnny €&ihg: Pauws., S. (2002). "CubyHum: A Fully Operationak@uby-
A Comprehensive Error Model for Sung Music Queties. Humming System.ISMIR 2002 Conference Proceedings
ISMIR 2002 Conference ProceedingBCAM, pp. 124- IRCAM, pp. 187-196.
132. Shifrin, J., Pardo, B., Meek, C., & Birmingham, W.. (2002).
Meek, C., & Birmingham, W. P. (2002b)Johnny Can't Sing: "HMM-Based Musical Query Retrieval." Joint

A Comprehensive Error Model for Sung Music Queries Conference on Digital Libraries Association for
(CSE-TR-471-02): University of Michigan. Computing Machinery, pp. 295-300.

