
	 i	

	

Improving Antibody CDR Template 

Selection by Structural Cluster Prediction 

	
	

 
by 

Xiyao Long 
 

	
 

A thesis submitted to the Johns Hopkins University in conformity with the 
requirements of the degree of Master of Science in Engineering 

	

 
Johns Hopkins University 

Baltimore, Maryland 
  Nov, 2017 

 

 

 

 

 

©Xiyao Long, 2017. 

 All rights reserved  



	 ii	

Abstract 
With	the	advent	of	high-throughput	sequencing,	antibody	sequences	can	be	acquired	at	

much	 greater	 speed	 than	 corresponding	 structures,	 creating	 a	 need	 for	 rapid	 structure	

determination.	 Computational	 modeling	 is	 the	 only	 feasible	 method	 for	 high-throughput	

structure	 determination,	 however	 it	 does	 not	 always	 produce	models	with	 high	 accuracy.	 In	

antibody	modeling,	 the	 framework	 regions	 are	 well	 conserved	 and	 readily	 modeled	 to	 sub-

Angstrom	accuracy,	but	accurate	modeling	of	 the	complementarity	determining	region	(CDR)	

loops	remains	elusive.	This	is	a	challenge	we	must	overcome	if	we	are	to	study	antibody	function	

or	design	an	antibody,	using	models.	Of	the	six	CDR	loops,	the	non-H3	CDR	loops	(H1,	H2,	and	

L1–L3)	are	easier	to	model		than	the	H3	loop,	because	they	are	shorter	and	have	less	structural	

and	length	variability.	Moreover,	most	of	the	non-H3	CDR	loop	structures	can	be	grouped	by	CDR	

and	length	and	can	be	clustered	into	a	few	canonical	structure	clusters.	The	ability	to	accurately	

predict		the	correct	cluster	of	a	CDR	from	sequence	alone	could	improve	structural	modeling.	In	

this	 thesis,	 I	 assessed	 how	well	 current	modeling	 techniques	 can	 identify	 the	 CDR	 canonical	

structures	from	sequence	alone	and	I	improved	the	retrieval	accuracy.	First,	I	benchmarked	the	

current	CDR	loop	modeling	method	in	Rosetta	and	found	it	failed	to	predict	the	correct	canonical	

structure	clusters	for	19%	of	CDRs.	Next,	I	assessed	the	significance	of	the	failures	by	comparing	

to	 a	 random	 cluster	 selection	model.	 Then,	 to	 improve	 the	 accuracy	 of	 template	 selection,	 I	

trained	a	machine	learning	classifier,	for	each	CDR	and	length	group,	with	sequences	as	features,	

and	 found	 that	 the	 classifier	 successfully	 improved	 the	 retrieval	of	 canonical	 structures.	This	

improvement	 is	 not	 achievable	 by	 the	 residue	 position	 rules	 alone.	 Finally,	 I	 propose	

incorporating	 canonical	 class	prediction	via	machine	 learning	 to	 improve	canonical	 structure	

retrieval	 accuracy	 and	 I	 expected	 this	 improvement	 to	 increase	 as	 the	 less	 populated	 CDR	

clusters	become	more	enriched.		
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Chapter I: Introduction 

I. Antibody	CDRs	

The	 adaptive	 immune	 system	 present	 in	 all	jawed	 vertebrates1	 can	 respond	 to	 a	 myriad	 of	

pathogens.	Adaptability	stems	from	the	maturing	process	of	immunoglobulin	producing	lymphocytes	

(B	 cells)	 in	 which	 the	 immunoglobulin	 encoding	 genes	 undergo	 V(D)J	 recombination	 and	 somatic	

hyper-mutation	(SHM)	to	produce	an	enormous	variety	of	unique	antibody	sequences	(~10^13)2.	This	

process	generates	 immunoglobulins,	 or	 antibodies,	 comprised	of	 two	paired	 light	 and	heavy	 chains,	

where	the	light	chain	has	one	variable	and	one	constant	domain	and	the	heavy	chain	has	one	variable	

and	three	constant	domains	(in	the	IgG	 isotype)	shown	in	Figure	1-1.	Each	 immunoglobulin	domain	

consists	 of	 a	 beta	 sandwich,	 with	 the	 variable	 domains	 each	 having	 three	 loops,	 known	 as	

complementarity	determining	regions	(CDRs),	important	for	antigen	binding	and	the	framework	(FW)	

region	that	embeds	the	three	loops.	The	CDRs	are	often	annotated	as	L1,	L2,	and	L3	for	the	light	chain	

and	H1,	H2,	and	H3	for	the	heavy	chain	shown	in	Figure	1-2.		CDRs	have	high	sequence	and	structure	

variability,	just	as	expected	by	the	functional	requirement	to	bind	to	many	possible	antigens2,3.		

Antibodies	 have	 emerged	 as	 important	 therapeutic	molecules4	 and	 research	 tools5,6	 because	

their	ability	to	bind	any	one	of	a	diverse	set	of	molecules.	Their	biomedical	importance	and	utility	has	

led	to	the	arduous	study	of	their	structure	and	function7	8,	and	to	antibody	design	projects4	to	develop	

antibodies	 capable	 of	 binding	 various	 new	 pathogens	 or	 cell	 markers,	 or	 with	 improved	 affinity.	

However,	 both	 antibody	 structure	 determination	 and	 design	 are	 not	 always	 easily	 carried	 out	

experimentally.	 Protein	 X-ray	 crystallography	 is	 generally	 time	 and	 labor	 consuming	 and	 does	 not	

guarantee	a	solved	structure.	Experimental	protein	design	approaches	such	as	phage	display	can	have	

problems	in	finding	the	most	fit	variant	because	of	the	nonlinear	relationship	between	the	number	of	

mutations	and	protein	fitness	and	the	limited	exploration	of	sequence	space	due	to	library	size9.	



	 9	

	Computational	 modeling	 and	 design	 of	 antibodies	 can	 overcome	 the	 time	 and	 cost	 barrier	

present	in	experiments	and	provide	value	information10,11.	For	example,	high-throughput	modeling	of	

antibody	 structures	 has	 been	 shown	 to	 add	 prognostic	 value	 of	 sequence	 data	 alone	 in	 chronic	

lymphocytic	 leukemia12.	 Beyond	 modeling,	 docking	 studies	 of	 antibodies	 complexed	 with	 various	

antigens	 can	 reveal	 atomic	 details	 of	 antibody-antigen	 interactions13.	 Finally,	 in	 antibody	 design,	

computational	approaches	can	utilize	various	sequence	space	searching	protocols	to	enhance	affinity	

or	design	an	antibody	de	novo	(with	no	prior	sequence	information)	9–11,14.		

One	of	the	most	crucial	parts	of	antibody	modeling	is	the	modeling	of	CDRs.	The	CDR	modeling	

problem	is	essentially	loop	modeling	within	a	constrained	environment.	The	constrained	environment	

of	each	CDR	loop	consists	of	its	loop	stems	adjoining	to	the	conserved	beta	sandwiched	framework,	and	

the	other	CDRs	and	framework	segments	aligning	in	close	proximity	with	the	loop.	Fortunately,	the	CDR	

modeling	problem	is	alleviated	in	part	by	the	ever	expanding	library	of	solved	CDRs	structures	from	

their	antibodies.			

Current	antibody	modeling	suites	have	taken	several	approaches	in	modeling	the	CDR	regions,	

but	 most	 utilize	 homology	 modeling	 to	 choose	 a	 template	 structure	 followed	 by	 grafting	 onto	 the	

modeled	antibody	 framework	and	 “de	novo”	modeling	 for	 refining	 the	 grafted	CDRs.	The	homology	

modeling	step	seeks	a	structure	template,	based	on	the	query	CDR	sequence,	most	likely	to	resemble	

the	 query’s	 native	 structure.	 The	 antibody	 modeling	 tool	 SAbPred10	 utilizes	 FREAD15	 to	 find	 CDR	

template	 structures,	 with	 an	 environmentally	 constrained	 substitution	 matrix16.	 	 Kotai	 Antibody	

Builder17	and	PIGS12	manually	set	sequence-based	rules	for	selecting	CDR	templates.	RosettaAntibody11	

takes	a	minimalistic	approach	and	finds	the	most	similar	sequence	using	BLAST	within	the	CDRs	of	the	

same	CDR	loop	and	length	combination,	without	sequence	rules	or	specially	built	substitution	matrix.	

II. Canonical	CDR	loops	

As	 antibody	 variable	 regions’	 beta	 sandwich	 scaffolds	 that	 are	 structurally	 similar,	 the	

framework	(FW)	region	of	the	antibody	variable	domain	is	conserved18,	with	specific	amino	acid	(a.a.)	
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identities	in	the	same	positions	across	different	antibodies19,	whereas	the	CDRs	tend	to	be	variable	in	

sequence	and	length	as	a	result	of	V(D)J	recombination	and	SHM.	Thus	the	conserved	residues	serve	as	

“landmarks”	to	enable	a	universal	numbering	scheme	for	the	variable	domain,	with	numbers	repeated	

or	deleted	to	accommodate	variable	length	CDRs	loops.	Typically,	a	numbering	scheme	assigns	identical	

numbers	to	structurally	equivalent	regions.	The	are	many	examples	of	antibody	numbering	schemes	

including	 Kabat20,	 Chothia21,	 	 enchanced	 Chothia	 (Martin)22,	 IMGT19,	 and	 Aho23.	 The	 Aho	 scheme	 is	

preferred	because	it	can	be	used	to	number	both	antibodies	and	TCR,	and	considers	the	indel	positions	

that	may	be	missed	in	the	Kabat	and	Chothia	numbering	schemes.		Most	importantly,	the	Aho	scheme	

is	used	by	PyIgClassify	to	define	the	CDR	L1/H1	as	residues	24–42,	CDR	L2/H2	as	residues	57–72/69,	

and	CDRs	L3/H3	as	residues	107-138	and	these	CDR	definitions	are	used	throughout	this	thesis.	

When	non-H3	CDRs	of	the	same	length	and	type	(e.g.	all	L1	length	10	loops)	were	compared,	

studies22,24		found	that	the	many	loops	occupied	just	a	few	structural	clusters,	referred	to	as	canonical	

conformations.	 In	particular,	recent	work	done	by	North	et	al.	used	similarity	scores	derived	 from	a	

pairwise	 comparison	 of	 backbone	 torsion	 angles	 to	 generate	 structural	 clusters.	 By	 defining	 the	

canonical	 structure,	 or	 cluster	 exemplar,	 as	 the	 structural	median	of	 all	 cluster	members,	 this	work	

expanded	 on	 earlier	work	 by	 Chothia	 and	 coworkers’	manually	 identified	 canonical	 structures.	 The	

structural	median	is	a	good	representative	of	the	cluster	because	the	mean	torsion	angle	difference,	per	

residue,	between	any	cluster	member	and	the	exemplar	is	less	than	40	degrees.	Members	in	each	cluster	

therefore	deviate	from	the	cluster	exemplar	by	only	a	small	average	backbone	dihedral	angle	distance.	

Therefore,	CDRs	in	the	same	cluster	are	among	the	best	structural	templates	to	any	CDR	in	the	cluster.		
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Figure 1-2. CDR loops of a typical antibody variable fragment(Fv).  

	

III. Utilization	of	canonical	clusters	in	current	CDR	loop	modeling		

Currently	antibody	modeling	methods	vary	 in	how,	or	 if	 at	 all,	 to	 incorporate	CDR	canonical	

structure	 information.	Of	 the	 four	major	 antibody	modeling	 software	 I	 examined	 (RosettaAntibody,	

PIGS,	Kotai	Antibody	Builder,	and	SabPred),	only	PIGS	and	Kotai	Antibody	Builder	have	explicitly	set	

sequence	rules	to	predict	the	canonical	structure	of	the	query	CDRs.	The	sequence	rules	utilized	are	

manually	curated	and	the	identity	of	residues	in	specific	positions	is	used	to	assign	a	structural	cluster.	

These	rules	can	offer	deterministic	cluster	assignment	and	also	are	easy	for	human	interpretation,		but	

they	are	limited	in	their	adaptability	and	power	because	some	clusters	are	devoid	of	such	rules	and	the	
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L3

H1
L1
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simplicity	prevents	them	from	reaching	the	real	margin	of	clusters	boundaries	in	the	sequence	space.		

For	instance,	sequence	rules	utilized	by	PIGS	and	Kotai	Antibody	Builder	can	identify	fewer	canonical	

clusters	 in	 loop	 H1-6	 and	 H1-9(labeled	 for	 a	 different	 CDR	 definition	 scheme)	 than	 the	 number	

identified	by	North	study.	Kotai	Antibody	Builder	took	one	step	further	in	this	issue17	by	devising	a	two-

voter	method	to	incorporate	all	canonical	structures	candidates	in	cluster	identification	other	than	just	

which	 sequence	 rules	 can	 identify.	 	 The	method	 select	 structural	 clusters	 passing	 position	 specific	

substitution	matrix	(PSSM)	thresholds		and	also	identified	from	specific	structural	cluster	by	curated	

key	residues	sequence.	 If	 the	sequence	 is	not	covered	by	position	specific	 rules	and	sequence	PSSM	

scores	passing	thresholds	corresponding	to	multiple	clusters,	 then	the	cluster	with	CDR	of	 the	same	

origin	as	the	selected	framework	structure	template	is	favored.	The	Kotai	cluster	identification	method	

correctly	identified	cluster	in	90%	of	all	queries,	yet	it	is	not	clear	whether	the	tested	data	is	excluded	

from	constructing	the	PSSM	profiles,	therefore	the	accuracy	might	be	overestimate.	RosettaAntibody	

and	 SabPred	 do	 not	 utilize	 canonical	 structure	 identification	 for	 CDR	 template	 searching,	 but	 use	

similarity	scores	to	find	CDR	templates	based	on	sequence	similarity.	RosettaAntibody	uses	BLAST	with	

the	PAM30	substitution	matrix	for	similarity	scoring,	whereas	the	homology	modeling	method	named	

Fread	in	SabPred	utilize	environment	specific	substitution	matrix	for	scoring.	Additionally,	Rosetta	has	

a	proline	filter	that	discards	CDR	templates	belonging	to	any	one	of	the	cis	clusters	if	the	query	CDR	

does	 not	 have	 proline	 at	 the	 correct	 position,	 because	 cis-trans	 isomerization	 is	 only	 common	 for	

proline.	

IV. Comparison	of	CDR	loop	modeling	accuracy	of	different	methods.		

It	stands	to	reason	that	if	CDRs	in	the	same	structure	cluster	assume	very	similar	structure,	then	

the	 ability	 of	 a	modeling	method	 to	 predict	 cluster	membership	 is	 a	 good	 indicator	 of	 its	 accuracy.	

However,	except	for	Kotai	Antibody	Builder,	the	above	methods	have	not	reported	accuracies	for	cluster	

prediction.	Most	of	the	published	work	has	focused	on	reporting	the	backbone	RMSD	between	the	query	

and	model	CDR.	For	example,	a	study	benchmarked	the	RosettaAntibody	homology	modeling	method	
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on	54	antibody	targets,	with	42/54	(L1),	50/54	(L2),	37/54	(L3),	36/54	(H1),	and	42/54(H2)	having	

less	than	1	Å	RMSD	between	the	homology	modeled	and	actual	CDR.	As	another	example,	to	benchmark	

PIGS,	a	set	of	689	antibody	structures	was	used	with	leave	one	cross	validation	(LOOCV)	to	evaluate	

performance.	The	results	showed	only	50%	of	 the	modeled	non-H3	CDRs	have	 less	than	1	Å	RMSDs	

when	 compared	 to	 the	 actual	 structures.	 The	 smaller	 percentage	 of	 sub-angstrom	 accuracy	models	

compared	 to	 Rosetta	 is	 possibly	 due	 to	 the	 smaller	 template	 library	 of	 PIGS.	 Finally,	

AbodyBuilder(SabPred),	which	utilizes	FREAD	for	loop	modeling,	was	tested	on	a	set	of	54	antibodies.	

The	average	query	to	model	RMSD	is	reported	with	RosettaAntibody	having	lower	RMSDs	in	3	out	of	5	

non-H3	CDRs	compared	to	the	Fread	(in	Angstrom	1.09,1.00,0.88	versus	0.83,	0.91,	0.83	for	loops	L1,	

L3,	H1).	 

As	 stated	 above,	 the	 benchmarking	 studies	 for	 different	 modeling	 methods	 are	 done	 using	

different	 sets	 of	 antibodies,	 so	 evidence	 suggesting	 the	 superiority	 of	 one	 method	 over	 another	 is	

confounded	by	the	disparity	of	test	set	size	and	template	library	size	between	the	studies.	Most	of	the	

performed	 studies	 are	 also	 limited	 in	 the	 dataset	 size	 for	 evaluating	 the	 qualities	 of	 selected	 CDRs	

structural	templates.	The	evaluation	on	just	a	small	or	incomplete	data	sets	can	also	overlook	some	CDR	

template	 selection	 problems	 that	 are	 only	 significant	 under	 the	 examination	 of	 a	 greater	

dataset.	 	Moreover,	the	above	comparisons	were	done	using	final	models	having	its	grafted	template	

backbone	structures	further	sampled	to	minimize	the	energy,	which	are	indicative	of	the	CDRs	template	

structure	selection	quality,	but	not	equivalent,	as	the	energy	refined	structure	can	assume	a	different	

canonical	structure	cluster	even	the	initially	threaded	template	structure	is	in	another	cluster25.	 

V. The	significance	of	proline	residues	and	importance	of	distinguishing	them		

The	Proline	in	proteins	can	assume	either	cis	or	trans	conformation	at	its	omega	dihedral	angle	

identified	by	the	bonds	connecting	the	atoms	� , -Cn-1-Npro-� , .	The	cis	conformational	proline	is	

found	to	be	especially	conserved	evolutionarily	and	frequently	sit	near	active	sites	of	proteins26.	The	
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isomerization	between	cis	and	trans	can	serve	a	lot	of	functional	roles	in	biological	system,	including	

being	the	rate	limiting	step	of	protein	folding,	modulating	signaling	proteins	and	ion	channels	between	

their	active	and	inactive	forms27,28.	The	failure	of	the	isomerization	regulation	is	found	to	induce	protein	

aggregation	in	neurodegenerative	disease	or	affect	phosphorylation	signaling	which	leads	to	cancers.		

It	is	also	suggested	that	the	trans	conformation	is	more	flexible	than	cis	conformation	in	the	loop	context.	

Antibody	 CDRs	 have	 certain	 residue	 positions	 with	 conserved	 proline,	 a	 portion	 of	 these	

Prolines	being	cis	and	the	other	portion	being	trans.	For	example,	the	7th	position	Prolines	in	L3-9	are	

predominantly	cis,	and	this	portion	can	be	further	divided	into	3	canonical	structural	clusters	as	cis7-

1,2	and	3	in	the	North	clustering	study.	The	other	much	smaller	portion	(12/445)	with	trans	proline	at	

7th	position	from	the	solved	structures	exist	only	in	cluster	L3-9-2.	

	Although	the	North	clustering	study	has	assigned	a	unique	trans	or	cis	conformation	to	each	of	

the	unique	CDR	sequence,	evidence	are	found	to	both	support	or	oppose	the	necessity	of	identifying	a	

Proline	residue	on	CDRs	to	be	exclusively	cis	or	trans	conformation.	On	the	opposing	side,	there	are	

studies	 identified	 the	 Proline	 cis-trans	 isomerization	 occurred	 in	 folded	 proteins	 not	 only	 in	 non-

antibody	protein	mentioned	above	but	also	 in	 the	antibody	 loops.	An	early	study	suggested	that	 the	

presence	of	 two	consecutive	Proline	on	L3	CDR	enable	cis-trans	 isomerization	because	of	 the	highly	

strained	conformation.	A	more	recent	study	reported	CDR	H3	Proline	isomerized	from	cis	to	trans	on	

an	epiregulin	(EPR)	antibody	upon	binding	to	EPR29.		Take	L3-9	as	the	example	again,	one	of	the	CDRs	

in	L3-9-2	have	consecutive	Proline	at	7th	and	8th	positions	and	all	antibody	structures	within	this	cluster	

are	from	the	antibody-antigen	complexes,	thus	the	Prolines	with	trans	conformations	in	L3-9-2	may	be	

results	 from	 isomerization	of	 cis	 conformational	CDRs	due	 to	 the	consecutive	Proline	 loop	strain	or	

higher	loop	flexibility	required	by	antibody	antigen	bindings.	The	small	dihedral	distances	of	cluster	

exemplars	from	the	two	clusters	can	also	such	conclusion.		

On	the	supporting	side,	cis	or	 trans	conformation	of	Proline	 is	not	a	 trivial	structure	variant.	

There’s	an	energy	barrier	of	14-24	kcal/mol30	of	transforming	between	the	two	protein	in	disordered	
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proteins	 suggesting	 its	 relative	 stable	 structure.	 And	 trans-Proline	 can	 exists	 on	 H1-13	 CDRs	 of	 an	

antibody	in	its	antigen	free	from	demonstrated	by	the	antibody	structure(4LRI)	with	good	resolution	

in	PyIgClassify,	which	means	not	all	trans	conformational	proline	on	CDR	is	a	result	of	antigen	binding.	

The	cis	conformation	of	certain	Proline	on	an	antibody	Fv	is	found	to	be	essential	for	its	correct	VH/VL	

interface	formation	during	protein	folding	and	its	isomerization	step	serves	as	the	rate	limiting	step,	

hence	it	is	an	important	structural	feature	to	capture	during	CDR	modeling.		In	the	modeling	process,	

once	proline	on	the	query	CDR	is	assumed	to	be	either	cis	or	trans	conformation	by	selecting	a	template,	

Rosetta	can’t	sample	the	possibility	of	it	being	the	other	conformation,	therefore	finding	the	most	likely	

conformation	of	Proline	sites	is	important	for	the	ensuing	modeling	success.		

VI. Rosetta	Antibody	non-H3	template	searching	method	“BlindBLAST”	

In	Rosetta	Antibody,	structural	template	of	a	nonH3	CDR	loop	is	found	by	BLAST	search	against	

a	database	of	CDR	loop	sequences	of	the	same	length	and	CDR	loop.	Because	the	method	does	not	utilize	

canonical	 CDR	 structural	 cluster,	 it	 is	 referred	 to	 as	 “blindBLAST”.	 BLAST	 parameters	 used	 is	 “-

substitution_matrix	PAM30	-word_size	2	-max_target_seqs	3000	-evalue	2000”.	The	template	hits	aligns	

with	the	query	CDR	are	ranked	by	bitscore	calculated	by		equation	(	1	),	in	which	only	the	similarity	

score	determines	the	bitscores	once	the	gap-penalty	and	substitution	matrix	is	chosen.	PAM30	is	used	

because	it	models	a	relatively	shallow	evolutionary	model	in	which	homologous	sequences	with	over	

75%	sequence	identity	at	branches	of	phylogenetic	trees	which	better	describes	the	“shallow	evolution”	

in	antibody	CDR	generation.	Gap	penalty	is	the	default	value	11	and	only	0.11%	alignments	are	found	

with	any	gap	out	of	the	hits	of	all	queries	in	this	parameter	setting,	therefore	the	gap	is	not	relevant	in	

most	cases.	The	method	implemented	in	RosettaAntibody	selects	10	CDRs	with	the	highest	bitscores	

for	 each	 query	 out	 of	 all	 candidate	 CDRs.	 The	 template	 structure	 is	 then	 grafted	 onto	 the	modeled	

framework	and	subject	to	further	energy	minimization	and	structural	refinement.			

Cases	of	modeled	antibodies	with	CDRs	assuming	non-query-cluster	canonical	structures	have	

been	reported	from	previous	uses	of	Rosetta,	most	 likely	because	of	 the	template	coming	from	non-
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query	 clusters.	 The	 majority	 of	 these	 errors	 are	 concentrated	 in	 a	 few	 error	 types	 identified	 as	

misclassifying	 cluster	 X	 to	 cluster	 Y,	 or	 clusterX-clusterY	 misclassification	 type.	 The	 prevalence	 of	

certain	misclassification	types	can	come	from	two	sources,	one	is	the	large	member	size	in	at	least	one	

cluster	involved	in	the	cluster	pair,	the	other	is	the	bias	toward	certain	misclassification	than	others	in	

the	 method.	 In	 this	 thesis,	 the	 top	 similarity	 template	 for	 each	 query	 is	 used	 for	 evaluating	 the	

effectiveness	of	blindBLAST	in	recovering	canonical	CDR	structure	of	the	query.			

� = � , � = 1… �	��������	�����	�ℎ�		

(	1)	

� =
�� − ln	(K)

ln	(2)
	

	

VII. Machine	learning	on	protein	classification	and	data	sampling	scheme		

Machine	learning	has	been	used	extensively	in	protein	classification	problem	such	as	predicting	

protein	function,	folding	rate,	superfamily,	for	fold	recognition,	enzyme	class,	functional	binding	sites.	

A	machine	 learning	 classifier	 can	 be	 optimized	 by	 its	 training	method,	 cost	 function,	 and	 sampling	

method.	 Various	 machine	 learning	 methods	 have	 been	 used	 in	 these	 studies.	 A	 recent	 study	

demonstrated	 that	 the	 ensemble	method	 gradient	 boosted	 trees	 gives	 the	 best	 accuracy	 in	 tests	 of	

classifying	dataset	of	Structural	Classification	Of	Protein	database	(SCOP)31.	The	conclusion	of	this	study	

is	applicable	for	the	method	choice	in	CDR	canonical	cluster	prediction	because	both	the	features	and	

the	nature	of	predicted	class	bear	good	similarity.	Various	sampling	methods	for	combating	the	sample	

class	imbalance	have	also	been	evaluated	including	down-sampling	the	majority	class	and	up-sampling	

the	minority	class	by	resampling	or	adding	synthetic	cases	in	previous	studies32,33.	Results	suggest	none	

of	the	sampling	methods	are	always	better	than	others,	but	dataset	and	data	size	dependent,	but	down-

sampling	majority	classes	inside	each	weak	learner	in	an	ensemble	of	weak	learners	is	reported	to	give	
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the	most	robust	receiver	operating	characteristic(ROC).	The	advantage	is	reasoned	to	come	from	the	

edge	given	by	 independent	realizations	of	weak	 learners	trained	by	more	distinct	sets	of	samples	 in	

majority	classes.		

VIII. The	goal	of	the	thesis	

In	this	thesis,	I	aim	to	improve	non	H3	CDR	homology	modeling	by	finding	template	which	are	

more	structurally	similar	than	current	Rosetta	template	searching	strategy	achieves.	This	is	achieved	

by	introducing	machine	learning	classifier	trained	for	each	CDR	loop	and	length	of	the	CDR	queries	prior	

to	specific	template	selection	by	similarity	score.		I	evaluate	its	effectiveness	by	collecting	the	prediction	

accuracy	improvement	compared	to	simply	BLAST	at	the	resolution	of	specific	misclassification	types	

responding	to	the	canonical	cluster	pairs.	Chapter	II	gives	the	methods	I’m	using	for	these	analysis	with	

the	corresponding	results	listed	in	the	Chapter	III	Results	section.	The	reasons	for	success	and	failure	

of	 using	 the	 machine	 learning	 classifier	 and	 the	 features	 most	 important	 for	 class	 predication	 are	

inferred	from	the	result,	and	summarized	in	Chapter	IV	Discussion.		
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Chapter II: Methods  

I. Dataset	

A	 set	 of	 non-redundant	 canonical	 CDR	 loops	 was	 obtained	 from	 the	 PyIgClassify.	 In	 the	

PyIgClassify	set,	the	CDR	loops	are	partitioned	by	CDR	loop	(L1,	L2,	L3,	H1,	H2,	and	H3)	and	length,	each	

of	 which	 are	 further	 clustered	 by	 their	 structures,	 so	 that	 the	 cluster	 members	 are	 always	 more	

structurally	similar	to	their	own	cluster	exemplar	than	any	other	cluster	exemplars.	The	distribution	of	

CDR	cluster	membership	is	very	unbalanced,	with	each	CDR	loop	and	length	pair	having	generally	one	

well-populated	cluster	and	many	other	sparsely-populated	clusters.	 	The	overall	cluster	membership	

distribution	by	CDR	loop	is	plotted	as	Figure	2-1.	
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Figure 2-1. Canonical CDR loop cluster distriburion: 

	The	barplot	represents	the	non-redundant	case	number	distribution	of	structure	clusters	in	different	
cdr	loop	lengths	in	current	PyIgClassify	database.	Some	loop	length	have	very	sparse	data	while	other	
loop	length	are	very	populated.	The	same	pattern	is	observed	for	the	structure	clusters	distribution	
within	each	loop	length.	

II. Methods	for	evaluating	the	CDR	loop	structures	difference.	

a). Structural	difference	between	each	pair	of	CDR	loops	

i). Pairwise	dihedral	distance	

The	PyIgClassify	database	is	clustered	based	on	pairwise	dihedral	angle	distances,	within	CDRS	

of	 the	same	loop	and	 length	group.	The	�	and	ψ	dihedral	angles	are	defined	by	backbone	atoms	of	a	

given	residue	(k)	and	it’s	neighbors	(k±1):	C , N , C , , C 	and		N , C , , C , , N ,	respectively.	 	The	

pairwise	 loop	dihedral	angle	distance	is	denoted	as	D(i, j)	for	 	 loop	pair	 i	and	j	and	calculated	by	the	

following	equation:		
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D(i, j) = (2 	1 − cos � , − � , + 2 	1 − cos � , − � , 	)				

		

(	2	)	34	

� , 	denotes	�	dihedral	angle	at	� 	residue, � , 	denotes	�	dihedral	angle	at	� 	residue.			

ii). Pairwise	rmsd	

In	addition	to	dihedral	distances,	a	common	measure	of	 loop	similarity	is	RMSD.	To	calculate	

RMSD,	a	pair	of	CDRs	in	the	same	loop	and	length	group	is	aligned	by	the	5	residues	at	the	loop	anchor	

sites	(5	residues	before/after	the	loop	in	question),	then	the	RMSD	between	the	two	CDRs	is	calculated	

by:		

���� =
1

�
( � − � + � − � + � − � )					

		i	from	1	to	N		are	the	backbone	atoms	N,	Ca,	C	along	the	CDR	loop		

(	3	)	

	

b). Structural	characterization	of	each	cluster	and	cluster-wide	structural	comparison.	

i). Measuring	dihedral	distance	between	cluster	exemplars	

The	 cluster	 exemplar,	which	 is	 the	median	 structure	 to	 all	 of	 the	 cluster	members,	has	been	

defined	 by	 the	 PyIgClassify	 database.	 The	 structural	 difference	 between	 two	 clusters	 can	 then	 be	

measured	as	 the	dihedral	distance	between	cluster	exemplars.	Therefore,	dihedral	distances	of	such	

pairs	are	extracted	and	used	for	comparison.			

ii). Mean	and	variance	of	dihedral	angles	at	each	position	per	cluster	

Within	 each	 cluster,	 the	dihedral	 angle	mean	and	 standard	deviation	 are	 calculated	 for	 each	

residue.	 The	mean	 dihedral	 angle	 is	 found	 as	 an	 angle	 value	 that	 can	minimize	 the	 dihedral	 angle	

variance	 from	 all	members	 at	 the	 angle	 position.	 The	 standard	 deviation	 is	 the	 square	 root	 of	 this	

variance.	The	means	and	variances	are	used	 for	demonstrating	 the	pattern	of	 structural	divergence	
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among	 clusters	 and	 within	 a	 single	 cluster.	 Corresponding	 equations	 are	 listed	 in	 supplementary	

material.	

III. Categorizing	misclassification	types	observed	in	blindBLAST		

a). Construction	of	null	model		

A	null	model	 is	constructed	to	simulate	the	prevalence	of	misclassifications	between	clusters	

assuming	 the	 prediction	 method	 has	 no	 true	 discriminative	 power.	 	 In	 the	 null	 model,	 cluster	

membership	 is	 randomly	assigned	 to	every	CDR	 in	PyIgclassify	dataset	according	 to	 the	real	cluster	

member	size	distribution	in	the	dataset.	Such	sampling	is	performed	1000	times.	In	each	sampling,	an	

error	 case	 is	 identified	 when	 the	 cluster	 of	 the	 query	 CDR	 and	 the	 randomly	 assigned	 cluster	 are	

different	as	illustrated	in	Figure	2-2.		The	empirical	error	count	distribution	for	each	misclassification	

can	be	obtained	under	the	null	model.	An	example	of	the	random	assignment	error	count	distribution	

is	shown	in	Figure	2-3.	

b). blindBLAST	Leave-One-Out-Crossvalidation	

The	 CDR	 misclassification	 profile	 of	 the	 blindBLAST	 method	 is	 constructed	 to	 evaluate	 the	

misclassification	bias	present	in	blindBLAST.	BlindBLAST	searching	is	conducted	in	LOOCV	setting,	in	

which	candidate	templates	for	a	CDR	query	are	all	the	CDRs	of	the	same	length	and	type,	excluding	the	

query	itself.		The	template	CDR	that	gives	the	highest	similarity	score	is	chosen	as	the	template	for	each	

query	as	described	in	the	introduction	section.	An	error	case	is	identified	when	the	cluster	of	a	query	

and	the	cluster	of	its	selected	template	are	different.	

c). Significance	test	on	cluster	A-cluster	B	misclassification	

The	bias	of	blindBLAST	toward	certain	cluster-to-cluster	misclassifications	can	be	evaluated	by	

comparing	the	observed	blindBLAST	error	count	and	the	empirical	error	count	under	the	null	model.	A	

two-tailed	hypothesis	test	at	0.05	level	is	formulated	as	the	following	equation:		�n 	
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�0:		observed	�error	consistent	with	random	assignmnet							

��:		observed	�error	not	consistent	with	from	�0 

� = 0.05 

�
error

=
� �n

∗ ≥ �error
all

�all
 

� = min	 �
error

, 1 −	�  

� ≤ 0.025, � 	is	rejected 

� > 0.025, � 	is	not	rejected, 

(	4	)	

	

in	which		� 	is	the	error	count	from	LOOCV	blindBLAST	and		�∗ 	with	 n	 from	 1	 to	 1000	 are	

the	error	counts	for	1000	iteration	random	assignment	simulation.		

	A	quantity	termed	“effect	size”	quantifies	how	many	is	the	misclassification	count	from	results	

of	blindBLAST	different	from	the	mean	value	of	the	count	in	the	null	model	by	the	standard	deviation	of	

the	count	in	the	null	model,	offering	quantification	of	the	difference	beyond	significance.		

� =
� −	�

	� 	
	

(	5	)	

,	 in	 which	 	�	and	� , � 		 are	 the	 blindBLAST	 derived	 count,	 the	 average	 and	 standard	

deviation	of	the	corresponding	count	from	the	random	cluster	assignment	null	model.	The	values	are	

plotted	in	the	Figure	5-7.	

d). Misclassification	grouping	

Cluster	misclassifications	can	be	grouped	by	whether	or	not	a	specific	misclassification	occurs	

more	frequently	in	blindBLAST	than	in	the	null	model,	based	on	the	value	of	� 	.	For	example,	values	

of	� 	 ≥ 0.975	indicate	that	blindBLAST	is	misclassifying	loops	significantly	more	than	null	model	

from	one	cluster	to	another.	The	remainder	are	grouped	based	on	both	the	specific	�error	and	the	value	

of		� 	,	with	detailed	discussion	in	the	Results.		









	 27	

Error	count	is	the	number	of	errors	in	the	query	set	for	each	round.	N	is	the	total	of	case	number	in	
the	query	set	and	training	set	put	together.	The	term	��� 	denotes	the	cluster	identification	accuracy	
in	the	1st	repeat	of	10-fold	cross	validation,	��� 	���	��� 	are	prediction	accuracies	resulted	from	
different	fold	divisions.		

V. The	guidedBLAST	method	

a). Machine	learning	algorithm	selection.		

I	propose	“guidedBLAST”,	a	method	 that	 introduces	a	machine-learning	model	 to	predict	 the	

cluster	 membership	 before	 using	 BLAST	 to	 search	 for	 a	 template	 within	 the	 predicted	 cluster.	 A	

preliminary	search	for	the	machine	learning	approach	with	high	accuracy	and	low	model	complexity	

approach	 to	 this	 classification	 task	 was	 performed.	 The	 surveyed	 methods	 include	 linear	 models,	

decision	trees,	support	vector	machines	and	gradient	boosting	machines	(GBM).	GBM	was	chosen	as	

the	best	learning	method	for	predicting	CDR	clusters.		

b). Features	

I	use	known	antibody	sequence	as	features	to	train	machine	learning	classifiers	for	predicting	

CDR	cluster	membership	of	antibodies	with	unknown	structures.	The	feature	set	included	amino	acids	

identities	of	the	CDR	loop	and	the	10	flanking	upstream	and	downstream	residues.		At	each	position	on	

the	loop,	the	presence	and	absence	of	each	of	the	20	amino	acids	was	represented	by	a	binary	feature	

(0	or	1).			

c). Model	tuning		

The	GBM	model	complexity	is	tuned	for	each	CDR	loop	and	length	combination	independently.	

The	tuning	process	starts	with	a	search	over	a	hyper-parameter	grid,	where	each	grid	corresponds	to	

different	model	complexity.	Each	grid	specifies	the	set	of	parameters	used	when	the	models	are	trained	

with	the	same	data	division	scheme	as	blindBLAST	as	illustrated	in	Figure	2-4.	To	cope	with	the	class	

imbalance	problem	(some	cluster	more	well	represented	than	others),	9	out	of	10	 folds	used	as	 the	

training	data	in	each	round	undergo	an	additional	sampling	step,	in	which	cases	belonging	to	the	less	

popular	 classes	 are	 resampled	 to	match	 the	 number	 of	 cases	 belonging	 to	 the	most	 popular	 class,	
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therefore	attain	a	balanced	clusters-member-size	distribution	in	the	training	set.	The	model	estimation	

accuracy	for	the	parameter	grid	was	then	obtained	by	averaging	the	results	from	cross	validation.	The	

best	 model	 is	 chosen	 by	 choosing	 the	 grid	 that	 gives	 better	 model	 estimation	 accuracy	 than	 grids	

representing	lower	complexity,	but	not	lower	than	the	average	of	the	next	5	more	increasingly	complex	

ones.			

d). Variable	importance	

The	 features	 that	 are	most	 important	 to	 the	 classifications	 are	 extracted	 from	 the	 best	GBM	

model.	These	features	are	ranked	by	their	importance.	The	feature	residue	i	at	position	j	with	a	relative	

importance	scale	of	100	is	considered	to	be	the	most	important	feature	in	classifying	clusters	in	this	

CDR	loop	and	length	type.	The	importance	is	calculated	by	first	calculating	how	much	a	decision	tree	

split	reduces	Gini	impurity	after	the	split(	4	),		then	summing	over	all	node-size-weighed	reductions	on	

splits	corresponding	to	that	feature	over	all	boosted	trees	as	equation(	5	).	The	variable	importance	can	

be	viewed	as	the	distinguishing	power	of	that	feature	accumulated	over	the	entire	training	process.					

	

Gini	

impurity:	

	

				� = 	1 − � + � + ⋯+ � 		���	�����	1 … �					
(	4	)	

	

				�� = 	(� ∗ � base	node − 	� ∗ � left	node − 	�

∗ � right	node )	

(	5	)	
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VI. AMAII	comparison	between	GBM	guidedBLAST,	blindBLAST,	FREAD,	Disgro.	

For	the	antibodies	in	the	second	antibody	modeling	assessment	(AMA	II),	I	calculated	the	RMSD	

between	 the	 predicted	 template	 versus	 actual	 query	 CDR	 structures	 using	 different	 loop	modeling	

methods.	 This	 is	 done	 to	 extend	 the	 performance	 comparison	 of	 guidedBLAST	 to	 other	 established	

template	searching	methods.	The	antibodies	in	the	AMAII	dataset	are	excluded	from	method	template	

libraries	except	for	DiSGro,	which	is	a	non-homology	modeling	method	and	does	not	rely	on	templates.		

a). FREAD-3.0.1	

	FREAD	version	3.0.1	was	downloaded	and	 installed	 locally.	The	FREAD	template	search	was	

executed	by	the	following	command:	

./FREAD	–f	query_pdb	–l	loop_start	–s	loop_end	-b	PyIgClassify_antibody_database	–C	-10			-m	

output_log	–r	

The	template	with	the	highest	similarity	score	is	extracted	from	the	output	log	file	and	its	RMSD	

to	the	query	CDR	extracted	from	the	pre-calculated	RMSD	table.		

b). DiSGro	

DiSGro	was	downloaded	and	 installed	 locally.	For	each	query	antibody	CDR,	 the	query	chain	

structure	was	extracted	from	the	antibody	and	the	to-be-modeled	loop	had	its	coordinates	set	to	0.0	(as	

instructed	by	the	DiSGro	manual).	For	each	loop,	five	thousand	candidate	structures	are	generated	with	

only	the	100	best	output.	The	most	confident	model	is	selected	as	the	best	model,	and	have	its	RMSD	to	

the	query	CDR	calculated	by	aligning	the	5	residues	stem	region	flanking	the	CDR	on	each	loop	end.		A	

sample	DiSGro	command	line	is:	

./disgro	-mode	smc	-f	model_seq	-n	5000	-nds	32	-start	loop_start	-end		loop_end	-eval	-confkeep	1000	

-ellip	-nscc	20	-pdbout	100	
	

c). GBM-guided-BLAST	and	blindBLAST	(Rosetta	Antibody)	

The	GBM-guided-BLAST	and	blindBLAST	is	executed	for	all	the	loops	as	IV	and	V	in	Methods.	For	

every	 query	 loop,	 the	 RMSDs	 of	 the	 loop	 aligned	 with	 either	 template	 searched	 by	 blindBLAST	 or	
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template	searched	within	the	CDRs	templates	corresponding	the	GBM	predicted	cluster	are	extracted	

from	precaculated	RMSD	table.		

	
	
	
	
	
	

Chapter III: Results: 

I. Misclassification	grouping	identifies	the	problematic	cluster	pairs	prone	to	be	

misclassified.	

To	 answer	 which	 cluster-A-to-cluster-B	misclassification	 is	 more	 important	 to	 improve,	 the	

misclassifications	are	categorized.	The	categorization	is	based	on	the	prevalence	of	error	in	blindBLAST	

and	how	is	the	value	compared	to	random	assignment	model	in	the	statistical	test	listed	in	Equation	(4).	

The	resulting	groups	are	listed	below	with	its	members	discussed.		

a). Significantly	worse	than	random	assignment:	

Misclassifications	 with	 � ≥ 0.975	 and	 blindBLAST	 LOOCV	 �error	 >3	 are	 categorized	 as	

significantly	worse	than	random	assignment,	and	listed	in	Table	3-1.		In	this	category,	there	are	some	

template	candidates	belonging	to	one	cluster,	but	gives	very	high	similarity	score	when	it	pairs	with	

multiple	query	sequences	in	another	cluster.	These	high	similarity	scores	are	directly	responsible	for	

the	high	number	of	error	count.	For	example,			six	out	of	the	eight	error	cases	in	the	L2-8-1	to	L2-8-5	

misclassification	are	caused	by	a	single	CDR	template	candidate	in	L2-8-5.		

Because	of	the	over	presence	of	certain	templates	that	generate	a	lot	of	misclassification	cases,	

there	 may	 be	 some	 residues	 pair	 that	 gives	 a	 large	 favor	 to	 the	 similarity	 scores	 of	 these	 wrong	

alignments.	I	examined	the	identities	of	these	amino	acid	pairs.		

For	 these	 error	 cases,	 the	 corresponding	 right	 query-template	 alignment	 can	 be	 found	 by	

constraining	the	BLAST	searching	inside	the	right	cluster	of	the	query.	Since	similarity	scores	are	the	
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sum	of	amino	acids	substitution	scores	along	each	alignment	position.	The	amino	acids	pair	that	gives	

the	 largest	 favor	 to	 the	 wrong	 alignment	 compared	 to	 the	 correct	 alignment	 are	 extracted.	

Misclassifications	from	L2-8-1	to	L2-8-5	are	caused	by	EE	alignment	favored	over	ED	at	the	7th	position	

of	the	loop(five	out	of	eight	cases),	and	the	remaining	three	cases	are	caused	by	TT	alignment	being	

favored	over	TS,	TN,	or	TF	at	variable	positions.	For	all	misclassifications	cases	 in	 this	category,	 the	

amino	acid	substitution	pairs	are	shown	in	Table	3-2.	In	these	error		cases,	PAM30	gives	a	large	favor	

to	wrong	alignment	substitution	GG	compared	to	GD/E/A/	for	H1-13,	similarly,	to	EE	compared	to	ED	

or	 TT	 compared	 to	 TS/N/F	 in	H2-8,	 and	 II	 compared	 to	 IS/T/R,	 or	WW	 compared	 to	WA/S,	 or	 YY	

compared	to	YS/N	in	H2-10.		

b). Similar	to	random	assignment,	but	with	greater	than	3	error	count	

	The	 misclassifications	 with	 0.025<	 � < 0.975	 and	 LOOCV	 �error	 >3	 have	 blindBLAST	

performance	consistent	with	random	assignment	model	performance	at	0.5	significance	level.	As	shown	

in	Table	3-4,	a	lot	of	them	appear	in	pairs,	for	example	L2-8-2	to	L2-8-1	misclassification	and	L2-8-1	to	

L2-8-2	misclassification.	The	pair	corresponds	to	two	clusters	with	usually	one	of	them	being	the	most	

popular	cluster	in	the	loop	type.	The	only	misclassifications	between	both	non-popular	clusters	in	this	

group	are	in	the	H2-10.	Misclassification	pairs	of	L2-8-2	and	L2-8-1;	H1-13-1	and	H1-13-4;	H2-10-1	and	

H2-10-6	are	among	the	pairs	with	the	top	error	counts	with	misclassification	of	L3-9-2	to	L3-9-ci7-1	

being	a	singlet	in	the	top	error	counts.		

c). Significant	improvement	over	random	assignment,	but	with	more	than	3	error	count		

This	group	consists	of	misclassifications	with	� ≤		0.025	and	LOOCV	�error	>3	as	shown	in	

part	of	Table	3-4,	sorted	by	blindBLAST	LOOCV	�error.	They	are	the	ones	with	significant	improvement	

but	still	having	substantial	error	counts.	Many	of	the	top	ones	appear	in	pairs	and	have	one	member	of	

the	pair	to	be	the	most	popular	cluster	as	well,	and	belonged	to	many	of	the	loop	and	length	types	proved	
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problematic	 in	the	previous	misclassification	types	 including	H1-13	and	H2-10,	L3-9.	 	The	other	top	

ones	are	L1-11	and	L3-8.		

d). Significant	improvement	over	random	assignment,	with	less	than	3	error	count	

This	group	consists	of	misclassifications	with	� ≤	0.025		and	error	count	LOOCV	�error ≤	3	

listed	 in	 part	 of	 Table	 3-4.	 Misclassifications	 in	 this	 group	 are	 rescued	 by	 BLAST	 from	 random	

assignment	the	most.	They	appear	in	pairs	as	well	with	generally	one	member	being	one	of	the	most	

popular	clusters,	with	the	exception	of	misclassifications	between	L1-11-2	and	L1-11-3;	H2-10-3	and	

H2-10-2	not	involving	the	most	popular	cluster	in	a	CDR	loop	and	length	type.			

 

Table 3-1. Significantly worse misclassification using blindBLAST instead of random 
simulation:  

“query	cases”	denotes	the	number	of	error	count	that	fall	into	the	misclassification	type	of	query	cluster	to	

template	cluster.	The	“template	cases”	denote	the	number	of	unique	template	sequences	corresponding	
to	the	listed	query	sequences.	Largest	repeat	denotes	the	number	of	being	found	as	the	most	similar	CDR	

in	the	misclassification.		

error mean	simu query template

count error	count 	cluster 	cluster

13 5 2.1 H2-10-2 H2-10-none 1

11 2.8 1.7 L2-8-1 L2-8-5 1

7 2.5 1.3 H2-10-4 H2-10-2 1

6 0.6 0.8 L1-11-3 L1-11-none 1

5 0.9 0.9 H1-13-5 H1-13-3 1

5 1.7 1.2 L3-10-none L3-10-cis7,8-1 0.997

4 1 1 H1-13-3 H1-13-2 0.999

4 0.9 0.9 H1-13-2 H1-13-3 0.999

4 0.8 0.9 H2-10-none H2-10-6 0.997

3 0.7 0.8 H1-13-2 H1-13-4 0.995

3 0.3 0.6 H1-13-5 H1-13-7 0.998

3 0.6 0.8 L1-11-none L1-11-3 1

3 0.8 0.8 L3-10-cis7,8-1 L3-10-cis8-1 0.999

sd significance

	significantly	worse	than	random	
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Table 3-2.  Amino Acids substitution pairs most responsible for significantly worse 

misclassification: 

q-wt	is	residues	pair	aligned	between	query	and	template	from	a	wrong	cluster,	q-rt	is	for	the	same	
position	in	the	preceding	q-wt,	residue	pair	aligned	between	query	and	template	from	a	right	cluster,	
pos	is	the	position	along	the	loop,	q-cluster	is	the	query	cluster,	wt-cluster	is	the	wrong	template	
cluster	which	the	specific	q-wt	alignment	comes	from.		
	
 

 

q-wt q-rt pos q-cluster wt-cluster q-wt q-rt pos q-cluster wt-cluster

DA DY 11 H1-13-3 H1-13-2 LN LK 8 H2-10-2 H2-10-none

DD	

DD DP 11 H1-13-3 H1-13-2 MM MQ 1 L3-10-none L3-10-cis7,8-1

DD DG 5 H1-13-2 H1-13-3

DD DK 10 H2-10-none H2-10-6 NN NS 3 H2-10-2 H2-10-none

NN NT 5 L2-8-1 L2-8-5

DE DA 7 L2-8-1 L2-8-5 NN NT 5 L3-10-none L3-10-cis7,8-1

DN	

DN DY 10 H1-13-5 H1-13-3 RK RY 10 H2-10-2 H2-10-none

EE ED 7 L2-8-1 L2-8-5 RR RG 5 H1-13-5 H1-13-3

EE ED 7 L2-8-1 L2-8-5 RR RY 5 H1-13-2 H1-13-3

EE ED 7 L2-8-1 L2-8-5

EE ED 7 L2-8-1 L2-8-5 SS SK 7 H2-10-2 H2-10-none

SS SL 2 L2-8-1 L2-8-5

FF FQ 1 H2-10-4 H2-10-2 SS SR 7 L1-11-3 L1-11-none

SS SN 5 H1-13-5 H1-13-3

FL FV 1 H2-10-2 H2-10-none SS SV 8 H1-13-2 H1-13-3

GG GR 6 L1-11-3 L1-11-none TT TS 8 L2-8-1 L2-8-5

GG GD 13 H1-13-5 H1-13-3 TT TN 3 L2-8-1 L2-8-5

GG GE 4 H1-13-3 H1-13-2 TT TF 1 L2-8-1 L2-8-5

GG GA 11 H1-13-2 H1-13-3 TT TI 9 H2-10-4 H2-10-2

GG GA 6 H2-10-none H2-10-6 TT TA 2 H1-13-3 H1-13-2

GG GP 4 H2-10-none H2-10-6

VV VS 11 H1-13-5 H1-13-3

II IS 2 H2-10-2 H2-10-none

II IT 9 H2-10-4 H2-10-2 WW WA 4 H2-10-2 H2-10-none

II IR 9 H2-10-4 H2-10-2 WW WS 4 H2-10-2 H2-10-none

II IW 1 H2-10-none H2-10-6 WW WS 4 H2-10-2 H2-10-none

WW WL 6 L3-10-none L3-10-cis7,8-1

KK KF 10 H2-10-2 H2-10-none

KK KR 8 L1-11-3 L1-11-none YY YS 8 H2-10-4 H2-10-2

KK KR 8 L1-11-3 L1-11-none YY YS 10 H2-10-4 H2-10-2

KK KR 8 L1-11-3 L1-11-none YY YN 10 H2-10-4 H2-10-2

LL LV 1 H2-10-2 H2-10-none

LL LV 1 H2-10-2 H2-10-none

LL LW 6 L3-10-none L3-10-cis7,8-1

LL LY 9 L3-10-none L3-10-cis7,8-1

LL	

EE	

FF	

GG	

FL	

II	

KK	

RR	

SS	

TT	

VV	

WW	

YY	

DA	

DE	

LN	

MM	

NN	

RK	
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Table 3-3.  Percentage of different misclassifications 

The	above	analysis	gives	the	performance	of	BLAST	compared	with	random	assignment.	The	
performance	of	BLAST	in	terms	of	the	error	percentage	of	classifying	one	cluster	into	some	other	
clusters	with	over	0.3	and	error	count	greater	than	4	are	listed	in	the	following	figure.				
 

error mean	simu 	query	 query template error

	count 	error	count 	cluster	size 	cluster 	cluster 	percentage

27 27.7 2.2 34 L3-9-2 L3-9-cis7-1 insignificant 0.79

25 44.9 4.3 75 L1-11-2 L1-11-1 smaller 0.33

21 22.5 1.5 25 L2-8-2 L2-8-1 insignificant 0.84

17 12.6 2.3 22 H2-10-3 H2-10-1 larger 0.77

15 25.5 2.3 32 H1-13-3 H1-13-1 smaller 0.47

14 18.2 1.9 23 H1-13-4 H1-13-1 insignificant 0.61

14 17.4 2.7 30 H2-10-6 H2-10-1 insignificant 0.47

10 9.0 0.9 10 L2-8-4 L2-8-1 larger 1.00

9 17.4 1.9 22 H1-13-2 H1-13-1 smaller 0.41

7 2.5 1.3 9 H2-10-4 H2-10-2 larger 0.78

6 6.5 1.1 8 L3-9-cis7-3 L3-9-cis7-1 insignificant 0.75

6 10.5 2.0 17 L3-8-2 L3-8-1 smaller 0.35

5 8.9 1.3 11 L3-9-cis7-2 L3-9-cis7-1 smaller 0.45

sd sig
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Column1 Column2 Column3 Column4 Column5 Column6

201 error mean	simu query template

46 count error	count 	cluster 	cluster

212

75 27 27.7 2.2 L3-9-2 L3-9-cis7-1 0.438

19 26 17.6 4.1 H2-10-1 H2-10-6 0.971

6 21 22.5 1.5 L2-8-2 L2-8-1 0.242

61 19 22.8 4.7 L2-8-1 L2-8-2 0.26

47 18 12.9 3.5 H2-10-1 H2-10-3 0.934

66 14 18.2 1.9 H1-13-4 H1-13-1 0.029

282 14 17.4 2.7 H2-10-6 H2-10-1 0.147

136 13 8.4 2.7 H2-10-2 H2-10-6 0.968

92 11 18.5 4.2 H1-13-1 H1-13-4 0.054

241 9 8.9 2.9 L3-9-cis7-1 L3-9-cis7-2 0.601

312 9 8.1 2.6 L3-10-1 L3-10-none 0.733

131 6 11.3 3.2 H1-13-1 H1-13-6 0.066

15 6 6.5 1.1 L3-9-cis7-3 L3-9-cis7-1 0.457

157 6 5.4 2.3 L1-16-1 L1-16-none 0.714

161 5 7.3 2.7 H1-13-1 H1-13-9 0.268

18 5 8.2 2.5 H2-10-6 H2-10-2 0.137

72 4 9.7 3.1 H1-13-1 H1-13-none 0.039

320 4 2.3 1.3 H2-10-7 H2-10-2 0.949

4 5.1 1.9 H2-10-none H2-10-2 0.406

4 2.7 1.6 L3-9-1 L3-9-2 0.851

4 1.9 1.3 L1-10-1 L1-10-2 0.963

25 44.9 4.3 L1-11-2 L1-11-1 0

15 25.5 2.3 H1-13-3 H1-13-1 0

14 25.7 5 H1-13-1 H1-13-3 0.011

13 44.4 5.7 L1-11-1 L1-11-2 0

12 102.2 6.6 H2-10-2 H2-10-1 0

12 27.6 5 L3-9-cis7-1 L3-9-2 0

9 17.4 1.9 H1-13-2 H1-13-1 0

8 103.4 8.4 H2-10-1 H2-10-2 0

6 10.5 2 L3-8-2 L3-8-1 0.021

5 8.9 1.3 L3-9-cis7-2 L3-9-cis7-1 0.01

4 7.2 1.2 H1-13-9 H1-13-1 0.016

4 9.5 1.4 H1-13-none H1-13-1 0.001

4 17.7 4.1 H1-13-1 H1-13-2 0

4 10.7 2.8 L3-8-1 L3-8-2 0.009

4 8.1 1.7 L1-12-2 L1-12-1 0.013

not	significantly	different	from	random	

	significantly	better	than	random	but	still	a	lot	of	error	counts

significancesd
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Table 3-4.  Misclassification types by blindBLAST performance group: 

Each	misclassification	is	defined	with	two	ordered	structure	clusters	with	its	corresponding	error	count	
being	the	number	of	CDRs	belonging	to	the	first	cluster	misclassified	to	the	second	cluster.	

error mean	simu query template

count error	count 	cluster 	cluster

2 33.5 2.4 L3-9-1 L3-9-cis7-1 0

0 33.1 5.5 L3-9-cis7-1 L3-9-1 0

1 22.0 2.9 L1-11-3 L1-11-1 0

1 21.7 4.4 L1-11-1 L1-11-3 0

3 15.5 3.9 H1-13-1 H1-13-5 0

2 15.0 1.8 H1-13-5 H1-13-1 0

3 11.2 1.5 H1-13-6 H1-13-1 0

0 10.7 2.8 L1-13-1 L1-13-2 0

0 10.7 1.8 L1-13-2 L1-13-1 0

3 10.5 3.2 H2-10-1 H2-10-none 0.008

2 10.3 1.5 H1-13-7 H1-13-1 0

3 10.3 2.1 H2-10-none H2-10-1 0

3 10.3 3.2 H1-13-1 H1-13-7 0.009

0 9.9 3.1 L1-11-2 L1-11-3 0

0 9.8 2.6 L1-11-3 L1-11-2 0

1 9.3 3.1 L2-8-1 L2-8-4 0.001

2 8.9 2.4 L1-14-2 L1-14-1 0.003

1 8.5 1.7 L1-14-1 L1-14-2 0

3 7.9 2.4 L1-12-1 L1-12-2 0.024

3 7.9 1.7 L3-10-none L3-10-1 0.003

1 6.6 2.6 L3-9-cis7-1 L3-9-cis7-3 0.007

1 6.2 2.3 H1-14-1 H1-14-none 0.01

0 6.1 2.1 H2-10-3 H2-10-2 0.001

0 6.0 2.4 H2-10-2 H2-10-3 0.005

1 5.6 2.2 L3-10-1 L3-10-cis7,8-1 0.018

0 5.6 1.4 L3-10-cis7,8-1 L3-10-1 0

2 5.4 0.8 L2-8-3 L2-8-1 0.002

0 5.2 1.5 H2-10-4 H2-10-1 0

0 5.0 2.1 L3-11-1 L3-11-cis7-1 0.006

0 4.5 0.7 L3-11-cis7-1 L3-11-1 0

0 3.8 1.2 L3-10-cis8-1 L3-10-1 0.006

0 2.4 1.0 L1-12-3 L1-12-1 0.024

0 2.4 0.7 L2-12-1 L2-12-2 0.006

sd significance

significantly	better	than	random	and	error	count<=3
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II. BLAST	good	at	distinguishing	some	clusters	but	bad	at	others	

The	misclassification	categories	can	be	further	divided	into	the	ones	that	are	good	and	the	ones	

that	are	bad.	The	explanations	are	sought	for	why	some	misclassifications	are	good	but	some	are	bad.	

The	criteria	for	good	and	bad	are	based	on	my	opinion	that	the	misclassification	with	less	than	

3	error	count	and	significantly	smaller	than	the	random	assignment	are	not	urgent	to	be	improved	and	

are	the	good	ones.	The	first	3	categories	“Significant	improvement	over	random	assignment”,	“similar	

to	random	assignment	but	with	greater	than	3	error	count”	and	“significant	improvement	over	random	

assignment	but	with	more	than	3	error	count”	are	considered	to	be	the	bad	group.		

a). Cluster	exemplar	distances	affect	classification	accuracy		

A	comparison	shows	that	the	good	misclassifications	generally	have	greater	cluster	exemplar	to	

exemplar	distances	than	that	of	the	bad	misclassifications(>4	error	counts),	shown	in	Table	3-5.	Only	

one	exception	 is	 found	as	H1-13-7	and	H1-13-1.	 It	has	 relatively	 small	between-exemplars	dihedral	

distance	but	is	one	of	the	greatly	improved	ones	in	the	loop	H1-13.		

b). Similarity	score	cause	misclassification	problem	

The	 similarity	 score	 is	 previously	 defined	 in	 equation	 (1),	 and	 determines	 which	 template	

candidate	is	chosen	for	a	query.	Four	clusters	are	picked	out	to	examine	the	difference	between	the	best	

similarity	score	within	the	cluster	the	best	similarity	score	outside	of	the	cluster.	These	Clusters	H1-13-

1,	 H2-10-1,	 L2-8-1,	 L3-9-2	 have	 bad	 recovery,	 especially	 L3-9-2	 has	 bad	 recovery	 of	 .	 The	 	 The	

misclassification	L3-9-2-L3-9-cis7-1	is	the	worst	one	as	almost	all	the	L3-9-2	cases	are	predicted	as	L3-

9-cis7-1	 .	 	 The	 highest	 query-template	 similarity	 score	 in	 LOOCV	 setting	 and	 in	 correct-cluster-

constrained	setting	for	each	query	as	x	and	y-axis	are	plotted	for	all	CDR	members	in	these	clusters	as	

Figure	3-1.	Many	queries	in	these	clusters,	especially	in	L3-9-2,	have	a	large	preference	to	templates	

from	incorrect	clusters.	And	in	addition	to	the	error	cases,	a	lot	of	right	cases	lie	on	the	border	of	the	

diagonal	line,	suggesting	the	similarity	scores	generated	by	BLAST	using	PAM30	are	not	discriminative	
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between	right	and	wrong	clusters.	 	The	result	 indicates	similarity	scores	using	PAM30	is	effective	in	

cluster	identification	for	some	cases	but	not	for	the	other	cases.		

Besides	 the	 fact	 that	 the	 error	 cases	 are	 directly	 caused	 by	 the	 favorable	 similarity	 score	 of	

query-with-wrong-cluster-template-alignment,	 whether	 a	 query	 in	 the	 cluster	 H1-13-1	 would	 be	

classified	wrong	are	found	to	be	also	related	to	the	relative	position	of	the	query	structure	to	its	cluster	

exemplar	and	how	populated	is	its	neighboring	structures.	

Specifically,	for	each	of	the	mentioned	four	clusters,	the	dihedral	distance	to	the	cluster	median	

density	distribution	is	compare	between	the	right	cases	and	the	wrong	cases.	And	the	density	of	the	

number	of	member	CDRs	existed	within	1/10	of	the	cluster	radius	length	with	the	center	being	a	query	

CDR	are	compared	between	the	right	cases	and	right	cases.			

i). Misclassified	cases	are	enriched	in	the	distal	end	in	the	spectrum	of	query	to	cluster	

center	distances.		

Figure	3-2	indicates	there	is	enrichment	of	unmatched	cases	in	the	distal	end	of	to-cluster-center	

distances	of	H1-13-1	query	cases,	meaning	the	structures	on	the	distal	end	of	H1-13	more	frequently	

find	similar	sequence	in	other	cluster	than	from	its	own.	The	other	three	clusters	does	not	show	such	

enrichment.	The	H2-10	and	L2-8	have	broad	peaks	in	the	middle	quantile	with	L2-8	having	a	small	dent	

in	left	which	is	not	conclusive	enough.		

ii). Misclassified	cases	are	enriched	in	the	smaller	number	region	in	the	spectrum	of	

number	of	structure	neighbors	of	all	query	cases.		

Figure	3-3	answers	whether	the	chance	of	a	query	being	identified	with	wrong	query	is	affected	

by	how	populated	is	its	neighboring	structures.	Comparison	between	the	density	plot	of	the	right	cases	

and	wrong	cases	suggests	the	wrong	cases	are	enriched	in	low	count	region	compared	to	the	density	of	

right	cases	in	clusters	H1-13-1,	while	such	trend	is	absent	in	H2-10-1	and	L2-8-1.	The	matched	case	

number		in	L3-9-2	is	too	small	to	lead	to	anything	conclusive.		

These	finding	suggest	that	the	two	factors,	relative	structural	position	to	the	cluster	exemplar	

and	the	number	of	structural	“neighbors”	affects	the	identification	accuracy,	 if	 the	query	CDR	comes	
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from	a	relatively	populated	cluster	such	as	H1-13-1.	These	within	cluster	factors	have	less	impact	if	the	

cluster	of	the	query	is	not	as	populated,	in	which	case	other	clusters	offer	wrong	templates	to	the	query,	

likely	because	of	its	structural	proximity	to	the	query	cluster.		

 

	

	

Table 3-5. Between cluster center dihedral distances of misclassification pairs:  

“Good”	and	“bad”	which	blindBLAST	did	significantly	better	versus	distances	of	those	not.	The	first	
column	is	the	true	cluster,	the	second	column	is	the	predicted	cluster,	the	third	column	is	the	between	
cluster	dihedral	distance,	which	is	defined	by	equation	(2).		
	

L3-9-1 L3-9-cis7-1 21

L3-9-cis7-1 L3-9-1 21

L3-9-cis7-1 L3-9-cis7-3 10

L3-9-2 L3-9-cis7-1 6.9

L3-9-cis7-1 L3-9-cis7-2 9.7

L3-9-cis7-3 L3-9-cis7-1 10.4

L3-9-cis7-2 L3-9-cis7-1 9.7

L3-9-cis7-1 L3-9-2 6.9

H1-13-5 H1-13-1 27

H1-13-6 H1-13-1 23

H1-13-7 H1-13-1 12

H1-13-1 H1-13-5 27

H1-13-1 H1-13-7 12

H1-13-4 H1-13-1 17

H1-13-1 H1-13-4 17

H1-13-1 H1-13-6 23

H1-13-1 H1-13-9 16

H1-13-2 H1-13-1 11

H1-13-3 H1-13-1 16

H1-13-1 H1-13-3 16

H2-10	

L3-9	

good	

bad	

H1-13	

good	

bad	

H1-13-1 H1-13-3 16

H2-10-3 H2-10-2 20.7

H2-10-2 H2-10-3 20.7

H2-10-4 H2-10-1 19.2

H2-10-none H2-10-1

H2-10-1 H2-10-none

H2-10-1 H2-10-6 6.8

H2-10-1 H2-10-3 9.4

H2-10-6 H2-10-1 6.8

H2-10-2 H2-10-6 8.8

H2-10-6 H2-10-2 8.8

H2-10-2 H2-10-1 11.3

H2-10-1 H2-10-2 11.3

L2-8-3 L2-8-1 11

L2-8-1 L2-8-4 8.8

L2-8-2 L2-8-1 4.5

L2-8-1 L2-8-2 4.5

H2-10	

good	

bad	

L2-8	

good	

bad	
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accuracies	vary	according	to	the	loop	and	length	type.	A	lot	of	CDR	loop	and	length	types	have	below	

90%	mean	accuracy.	This	leads	the	question	of	why	some	loop	and	length	type	have	better	accuracy	

than	the	others?	For	this	question,	I	find	characteristics	of	a	cluster	member	size	affect	its	blindBLAST	

classification	 accuracy.	 Loops	 with	 greater	 clusters	 number	 such	 as	 H1-13	 generally	 have	 lower	

accuracy.	Loops	with	more	than	one	popular	cluster	are	likely	to	have	low	accuracy.	Loops	with	sparse	

case	number	have	low	accuracies.		

H2-10	have	lower	accuracy	compared	to	H1-13	likely	because	its	cluster	two	is	more	balanced	

to	cluster	one,	therefore	increasing	chances	of	misclassification	associated	with	cluster	2.	It	is	the	same	

case	between	clusters	L1-11	and	H2-10	with	L1-11	more	balanced	in	its	member	size.	The	ones	with	

the	 worst	 accuracies	 are	 L3-10,	 L3-12,	 L3-8	 and	 L1-12,	 each	 of	 their	 cluster	 one	 is	 not	 the	 solely	

dominant	cluster	as	well.	Another	factor	is	the	small	total	member	size	of	the	loop.		Loops	L3-10,	L3-12,	

L3-8	and	L1-12	are	loops	with	sparse	member.	This	observation	however	does	not	apply	to	L1-13	and	

L1-14	with	L1-13	having	accuracy	greater	than	0.95.		

Figure	3-5	shows	that	substantial	increases	in	mean	RMSDs	between	query	and	template	CDRs	

can	be	observed	in	the	set	of	CDRs	with	template	from	wrong	clusters	in	the	3	repeat	10	fold	scheme	

versus	 if	 they	 are	 aligned	with	 the	most	 similar	 CDR	 sequenced	 template	 in	 their	 own	 cluster.	 The	

misclassifications	generally	lead	to	a	worse	query	to	template	RMSD	and	the	most	substantial	ones	are	

in	the	H1-13,	H2-10,	L1-11,	L1-12,	L2-8,	L3-9.		Therefore	improving	the	accuracy	of	cluster	membership	

of	templates	can	improve	the	quality	of	template	structure	nontrivially.	
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Figure 3-4. Per loop type blindBLAST cluster identification accuracy in 3-repeats-10-fold 
cross-validation: 
Each box is ploted based on 3 accuracy values each from the result of a 10-fold cross validation. The x 

axis denotes the loop length. These values each combine with the upper panel to indicate one specific 

loop type.  
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The	hyper-parameter	tuning	plot	Figure	3-7	shows	once	a	specific	model	complexity	is	reached	

for	 a	 loop	 and	 length	 type,	 the	model	 prediction	 accuracy	 is	 plateaued	or	 become	worse	 even	with	

higher	model	 complexity.	 The	 tuned	models	 can	 be	 divided	 into	 two	 groups	 based	 on	whether	 the	

prediction	accuracy	is	greater	than	that	of	blindBLAST	and	its	prediction	model	stability.	In	the	worse	

performing	group,	some	loops	L1-13,	L1-14,	L1-15		and	L3-10	are	plagued	by	model	instability	because	

the	standard	deviation	of	accuracies	are	greater	than	5%	and	even	20%	for	L1-15	due	to	the	sparsity	of	

the	data.	This	stability	problem	makes	the	usefulness	of	these	models	to	be	non-conclusive,	although	

L3-10	has	more	than	10%	accuracy	improvement	with	only	a	small	number	of	boosting	iterations	(100	

trees)	and	both	L3-11,	L3-8	have	some	modest	improvements.	Another	loop	in	this	group	is	H2-9	as	it	

has	worse	than	blindBLAST	accuracy	even	at	high	model	complexity.		

The	remaining	loops	have	more	promising	results,	besides	having	standard	deviation	of	model	

accuracies	below	5%,	compared	to	blindBLAST,	H1-13,	H2-10,	L3-9,	L1-16	all	achieve	greater	accuracies,	

although	by	small	numbers	except	for	H2_10	which	has	about	8%	improvement.	H1-13	takes	a	greater	

number	of	iteration	to	plateau	than	H2-10,	and	L3-9	takes	an	even	smaller	number	of	boosting	iterations.	

H2-10	achieves	the	second	largest	accuracy	improvement	over	all	the	loops	except	for	L3-10.		
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Figure 3-6. Gradient Boost Machine model complexity tuning.  

The	accuracies	on	y	axis	is	the	average	accuracy	of	the	3	repeats	10	fold	cross-validation.	Points	
correspond	to	different	model	complexities	of	the	GBM.	The	parameters	that	varies	include	boosting	
iterations(n.trees),	single	weak	learner	complexity(interaction.depth).	The	shrinkage	not	shown	is	set	
to	be	max	(0.01,	0.1*min(1,	nl/10000))	depending	on	the	case	number	of	the	training	set	nl	for	
each	loop	and	length	type.		Each	panel	correspond	to	the	performance	of	a	single	CDR	loop.	Compared	
to	the	performance	of	blindBLAST,	the	best	model	achieves	higher	mean	accuracy	and	generally	with	a	
lesser	model	variance.		
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interaction.depth n.trees shrinkage n.minobsinnode logLoss Accuracy

H1_13 9 1200 0.01 3 0.873 0.800

H2_10 9 1500 0.01 5 1.372 0.810

H2_9 6 3000 0.01 5 1.718 0.939

L1_11 6 3000 0.01 5 1.404 0.853

L1_12 6 300 0.01 5 0.424 0.861

L1_13 3 100 0.01 5 0.272 0.965

L1_14 3 300 0.01 5 0.475 0.888

L1_15 9 2000 0.001 2 0.131 0.905

L1_16 6 3000 0.01 5 -0.438 0.947

L2_8 6 2500 0.01 5 1.315 0.856

L3_10 9 2000 0.001 5 0.645 0.820

L3_11 9 3000 0.01 5 0.528 0.976

L3_8 9 3000 0.01 5 4.241 0.779

L3_9 6 1500 0.01 5 0.701 0.887
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Table 3-6. The finally tuned parameters with the average accuracy of the trained models by 
CV. 

	

b). Improvement	on	cis-related	classification	and	its	the	model	variable	importance	

Because	we	are	interest	in	distinguishing	between	cis	and	trans	proline	conformation,	how	is	

blindBLAST	compared	 to	 the	 trained	GBM	model	performance	 in	 these	misclassifications	 is	 studied.	

Figure	3-7	shows	that	the	GBM	rescued	most	of	Proline	cis-trans	conformation	associated	blindBLAST	

mis-classifications	in	L3-10	and	H1-13.	But	GBM	is	limited	in	its	power	in	distinguishing	L3-9-cis7-1	

and	 L3-9-2,	 despite	 reduce	 the	 error	 count	 to	 half	 of	 the	 misclassification	 case	 number	 in	 the	

blindBLASTresult.	This	is	because	15	out	of	the	27	blindBLAST	misclassified	cases	has	non-Proline	7th	

positions,	therefore	these	rescued	cases	can	simply	be	achieved	by	setting	a	filtering	rule	to	prevent	all	

queries	with	non-Proline	7th	positions	to	be	classified	to	the	cis-structural	clusters,	and	as	there’s	no	7th	

Proline	 in	L3-9-1,	 they	are	 likely	 to	 find	 templates	 in	L3-9-2,	 the	only	other	non-cis	 cluster	 in	L3-9.	

However	the	L3-10	has	a	quite	different	story,	besides	some	less	significant	rescues	in	misclassification	

types	labeled	as	1_cis7,8-1,	1_cis8-1,	none_cis7,8-1	and	none_cis8-1,	the	model	can	almost	completely	

distinguish	cis8-1	from	cis7,8-1	despite	they	both	have	Proline	at	7th	and	8th	positions	as	indicated	in	

Figure	3-7.		Those	less	significant	misclassifications	are	so	because	the	L3-10-1	do	not	have	CDRs	with	

8th	Proline	and	Seq	Logo	plot	Figure	3-10	shows	the	L3-10-none		cases	mostly	do	not	have	Proline	at	8th	

position,	therefore	it’s	easy	to	set	filtering	rules.	
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Figure 3-7. GBM vs blindBLAST performace in misclassifications involving cis conformation:  

The	x	axis	listed	all	cis	conformation	related	misclassification	types	which	appear	mostly	in	loops	H1-
13,	L3-10,	L3-8,	L3-9,	the	height	of	barplot	is	the	error	count	in	each	misclassification	in	the	10	fold	3	
repeats	blindBLAST	prediction	test	averaged	by	repeats.		

c). Other	non-cis	clusters	related	classification	accuracy	improvements	

So	how	are	the	performance	of	the	methods	compared	besides	the	discriminating	the	cis-proline	

clusters	 and	 trans-proline	 clusters?	 The	 cis-cluster	 related	misclassifications	 constitute	most	 of	 the	

improved	cases	in	L3-9	and	L3-10.	GBM	improved	misclassifications	with	over	3	count	improvement	or	

compromised	misclassification	with	over	3	count	error	count	increase	are		shown	in	Figure	3-9.		Many	

of	the	improved	ones	are	present	in	loop	H2-10	with	no	compromised	ones	from	this	loop.	The	best	

trained	model	 therefore	showed	better	discriminative	capability	especially	between	cluster	1	and	6,	

likewise	between	cluster	2	and	6.These	improvement	can’t	be	achieved	by	setting	simple	sequence	rules.		

The	 blindBLAST	 error	 cases	 in	 misclassification	 “1-6”	 have	 the	 H2-10-1	 query	 sequences	 with	 7th	

Glycine,	but	Glycine	is	also	the	dominate	7th	residue	of	H2-10-6.	No	other	residues	exist	as	the	dominant	

residue	identity	in	one	cluster	but	not	the	other	(Figure	3-11).	The	other	improved	misclassifications	
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include	less	noticeable	improvement	in	L1-11	and	the	2_1	misclassification	in	L2-8.	H1_13	by	GBM	have	

about	15	less	error	cases	compared	to	the	blindBLAST	166.3	error	counts	,	Figure	5-4	shows	discernible	

recovery	improvement	for	cluster	1,	3,	4	and	5.		Figure	5-3	indicates	that	this	improvement	comes	from	

many	small	error	count	decrease	in	different	misclassifications,	within	which	only	misclassification	4_1	

have	 greater	 than	 3	 error	 count	 decrease	 from	 blindBLAST	 (>10	 error	 count	 in	 blindBLAST)	

misclassification	type.	An	increase	of	error	count	greater	than	3	is	also	observed	in	6_3	misclassification	

for	H1-13(Figure	3-9).		

	

	

Figure 3-8. Error count of averaged 10-fold CV of blindBLAST and GBM by CDR loop:  
The misclassification counts for each left-out fold of the 10-folds-CV are collected as the selected 

template does not belong to the correct cluster or predicted cluster does not agree with the correct 

cluster. Then the results for all 3 repeats are averaged. The misclassification counts for blindBLAST 

and GBM are plotted for comparison, sorted on the x-axis by the order of improved classification 

counts from using GBM instead of blindBLAST. Besides the improved loops, GBM model make two 

loops worse but by just a few error counts.   
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Figure 3-9. GBM improved or compromised misclassifications with other 3 error count 
difference.  
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Figure 3-10. Seq logo of the samples in different clusters of L3-10. 
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H2-10-1	

	
H2-10-6	

	
H2-10-5	

	

Figure 3-11. Seq logo of samples in different clusters of H2-10.  
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Figure 3-12. Variable importance plots for the model with the best tuned parameters set of 

different loop and length types： 

The	y	axis	is	the	label	of	the	variable,	for	example,	7P	indicates	the	importance	of	the	presence	of	
Proline	the	the	7th	position	in	the	loop.	-3V	indicates	the	Valine	in	the	4th	upstream	position	of	the	
loop,	taking	the	direction	reversing	the	order	of	antibody	numbering	as	the	upstream	positon.	The	
11th	position	is	the	1st		position	of	downstream	of	L3_10.		

V. Compare	the	method	to	FREAD	and	Disgro.		

I	compared	the	new	method	with	other	methodical	approaches	such	as	the	homology	modeling	

method	FREAD	and	the	ab-initio	method	Disgro	using	the	antibodies	from	AMAII.	The	result	in	Figure	

3-13shows	that	both	GBM	and	blindBLAST	find	better	templates	in	terms	of	query	vs	template	RMSD	

when	compared	to	FREAD	and	Disgro,		and	GBM	guided	template	searching	rescued	the	template	from	

the	wrong	clusters	to	the	right	clusters	in	2	cases.	The	FREAD	result	is	in	agreement	with	one	of	the	

FREAD	paper	 showing	 it	does	not	 surpass	Rosetta	Antibody	 in	 its	modeling	 result	 in	L1-L3,	H1-H2.		

Therefore	blindBLAST	still	can	serve	as	a	good	homology	modeling	template	searching	strategy	despite	

its	 simplicity,	 and	 GBM-guidedBLAST	 can	 correct	 non-H3	 CDR	 template	 selection	 from	 the	 wrong	

canonical	cluster	.		
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related	clusters	can	be	equally	achieved	by	setting	a	filter	against	clustering	CDR	loops	without	a	proline	

at	the	7th	residue	position	into	the	L3-9-cis7	clusters.	The	improvement	in	the	L3-10,	especially	between	

its	cis7	and	cis7,8,	was	not	achievable	by	simply	setting	a	proline	filter	as	the	7th	and	8th	positions	in	

both	clusters	are	 filled	by	prolines.	 	Finally,	 the	most	prominent	 improvement	of	guidedBLAST	over	

blindBLAST	was	observed	in	H2-10,	reducing	misclassification	between	cluster	pairs	H2-10-1	and	H2-

10-6	and	H2-10-2	and	H2-10-6.	 	These	two	misclassifications	are	 improved	greatly	by	guidedBLAST	

because	their	member	sizes	are	more	balanced,	relative	to	the	most	popular	cluster	H2-10-1,	and	their	

absolute	sizes	are	not	as	sparse	as	other	loop	clusters.		

While	GBM	has	improved	some	of	the	blindBLAST	misclassification	cases	with	error	counts	no	

better	than	random	assignment,	it	has	not	improved	all	such	misclassifications.	For	examples,	L2-8-2	to	

L2-8-1,	H2-10-1	to	H2-10-3,	and	H1-13-4	to	H1-13-1	misclassifications	are	not	improved.	The	minority	

clusters	 (H2-10-3,	 H1-13-4,	 L2-8-2)	 in	 these	 cluster	 pairs	 are	 very	 imbalanced	with	 respect	 to	 the	

majority	 cluster	 can	 be	 the	 reason	 for	 lack	 of	 accuracy	 improvement.	 Besides	 the	 data	 distribution	

problem,	the	failure	to	distinguish	L2-8-1	and	L2-8-2	is	partly	due	to	the	very	small	dihedral	distance	

between	cluster	exemplars,	i.e.	the	clusters	are	very	similar.	This	raises	the	question	if	it	is	necessary	to	

distinguish	these	two	structural	clusters	during	template	searching.		

These	results	suggest	that	a	limiting	factor	in	further	improving	the	identification	accuracy	by	

GBM	is	the	unbalanced	member	size	of	the	minority	clusters	compared	to	the	size	of	the	majority	cluster	

once	 the	majority	 cluster	 is	 relatively	 populated	 (H1-13,	 H2-10,	 L2-8,	 L3-9).	 Therefore,	 it	 could	 be	

suggested	that	as	more	antibody	structures	are	resolved	to	enrich	some	of	the	minority	clusters,	the	

misclassifications	associated	with	those	clusters	can	also	be	greatly	improved	as	the	cases	of	H2-10-1	

and	 H2-10-6.	 	 Moreover,	 a	 fine-grained	 classification	 might	 classify	 structures	 to	 its	 most	 similar	

canonical	structure,	but	the	small	difference	between	structural	clusters	might	not	be	overcome	even	if	

the	minority	clusters	become	more	populated.		
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GBM-trained	classifier	is	a	good	step	to	be	incorporated	into	the	template	selection	in	non-H3	

CDR	homology	modeling	because	of	the	three	points:	the	overall	better	accuracy	achieved;	the	fact	that	

such	 improvement	 could	 not	 all	 be	 replaced	 by	 filtering	 rules,	 and	 that	 further	 enrichment	 in	 the	

minority	clusters	could	further	improve	the	accuracy.	

II. Future	direction:	

The	limit	in	the	current	accuracy	partly	lies	in	the	data	sparsity	of	clusters	with	small	member	

size,	this	limit	can	be	pushed	with	generating	synthetic	data	for	such	clusters.		A	set	of	structures	can	be	

generated	 that	 lie	 in	 the	 cluster	 radius	 constraint,	 and	 Rosetta	 design	 can	 be	 used	 to	 generate	 the	

synthetic	 CDR	 sequences	 to	 emulate	 the	 SMOTE	 method.	 Another	 approach	 of	 incorporating	 the	

antibodies	without	solved	structures	in	to	the	model	with	un-supervised	learning	can	also	be	attempted,	

so	that	the	number	of	cases	 in	the	unpopular	clusters	can	be	increased.	 	On	the	other	hand,	another	

tweak	in	the	sampling	and	learning	process	can	be	done	besides	generating	synthetic	data	for	sparse	

cluster,	which	is	building	weak	learner	each	time	by	under-sampling	the	more	popular	cluster	to	obtain	

cluster	distribution	balance,	which	is	stated	to	be	a	more	promising	method	rather	than	oversampling	

the	less	popular	cluster13.		

	

	

	

Chapter V: Supplementary: 
The	mean	dihedral	angle	is	calculated	for	each	dihedral	site	in	each	structural	cluster.	The	mean	

is	obtained	by	finding	the	value	that	minimize	the	variance	of	all	the	dihedral	angles	at	a	position	with	

this	 value	 being	 its	 mean.	 The	 standard	 deviation	 is	 calculated	 from	 the	 minimized	 variance.	 The	

equation	is:		
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� < −min 	� � 			 		� = 		min ��� � − � , 360 − ��� � − �

	

	
(	6	)	

	

��(��� � − � , 360 − �b� � − � )	
(	7	)	

	

	

	

	

 

Figure 5-1. Mean dihedral angle on each position of all members in the cluster along the cdr 
loops: 
 Clusters exhibit varying degrees of uniformity for the mean dihedral angle for each site. For some 

sites, the mean dihedral angles are close to each other, while for other sites, one of more clusters differ 

from each others by more than 20 degrees The plots suggest that the two ends of loops have less 

variable mean dihedral angles between different clusters than the middle positions of loops.  
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Table 5-1. Important sites of loops: 

	For	each	loop	site,		the	corresponding	mean	dihedral	angles	of	clusters		of	a	loop	length	and	type	
group	are	calculated,	if	any	angle	values	from	two	clusters	have	difference	greater	than	20,	they	are	
chosen	as	important	sites	for	classification.		
	
	
	

 

Figure 5-2. the standard deviation of dihedral angle at each position along the loop of all 
members in the cluster : 
 Most of the positions have standard deviation below 40 degrees except for the none clusters as they 

are the fail-to-classified ones. The dihedral angles in the loop center generally have greater sd than the 

positions near the stem.  
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Figure 5-3. Misclassification counts in H1-13: 

Most	of	the	misclassifications	with	larger	error	counts	(>5)	do	not	have	obvious	decrease	in	the	error	
counts	using	GBM	trained	classification	method.	The	types	with	decreased	error	count,	however,	
sometimes	have	its	reverse	pair	having	increased	error	count	using	GBM	compared	to	blindBLAST.			
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Figure 5-4. The recovery improvement in every cluster in loop H1-13. . 

	
 

 

 

	

Figure 5-5. The effect size of the correct classification counts:  

Improvement	by	blindBLAST	compared	to	the	random	assignment	simulation.	With	the	point	color	
coded	based	on	which	side	it	falls	into	the	significance	test	on	the	empirical	correct	counts	
distribution.	The	“cluster_1”	and	“non_1”	x	axis	label	separate	the	most	popular	cluster	from	other	
clusters.	The	y	axis	is	the	effect	size	of	the	differences.		
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Figure 5-7. The effect size of wrong classifications:  

All	misclassification	types	with	mean	simulated	error	count	greater	than	one	is	included	in	the	plot.	
The	x	axis	separates	the	misclassifications	into	three	types,	“1_prec”	are	misclassification	types	that	
cluster	non-cluster-1	into	it,	“1_reco”	are	types	that	cluster	cluster-1	to	other	non	cluster-1	clusters.	
The	“non_1”	are	types	of	misclassifications	between	non-cluster-1	clusters.		
 
 

 

 

 

 

 

 

●

●

●●

●

●●●

●●●
●

●

●
●
●
●
●
●●●

●

●
●●

●

●
●

●●

●●

●
●

●●

●●

●
●
●

●●

●

●
●●

●

●●
●

●
●
●
●●
●
●●
●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●
●

●

●

●
●

●

●
●●
●
●

●

●

●

●
●
●
●
●

●●

●

●

●

●
●●
●
●

●

●

●

●●

●

●●●

●

●

●

●

●
●

●

●
●●

●
●
●

●

●

●●●

●●
●

●

●

●

●

●●

●

●●

●
●●

●
●

●

L3_11 L3_8 L3_9

L1_15 L1_16 L2_12 L2_8 L3_10

L1_10 L1_11 L1_12 L1_13 L1_14

H1_13 H1_14 H1_15 H2_10 H2_9

1
_
p
re

c

1
_
re

c
o

n
o
n
_
1

1
_
p
re

c

1
_
re

c
o

n
o
n
_
1

1
_
p
re

c

1
_
re

c
o

n
o
n
_
1

1
_
p
re

c

1
_
re

c
o

n
o
n
_
1

1
_
p
re

c

1
_
re

c
o

n
o
n
_
1

−1.5
−1.0
−0.5

0.0

−4
−3
−2
−1

0

−4

−2

0

2

−10

−5

0

−6

−4

−2

−2.5

0.0

2.5

5.0

−1.5

−1.0

−0.5

0.0

−2.5

−2.0

−1.5

−3.5

−3.0

−2.5

−2.0

−10

−5

0

−2.0
−1.5
−1.0
−0.5

0.0

−8

−4

0

4

0.18

0.20

0.23

−2.5
−2.0
−1.5
−1.0
−0.5

−5

0

5

10

0.4

0.8

1.2

1.6

−1.5

−1.0

−0.5

0.0

0.5

−5.0

−2.5

0.0

error type

e
ff
e
c
t 
s
iz

e

significance

●

●

●

insignificant

larger

smaller

The effect size of wrong classifications





	 64	

Bibliography 

1.	 Hirano,	M.,	Das,	S.,	Guo,	P.	&	Cooper,	M.	D.	in	Advances	in	immunology	109,	125–157	(2011).	
2.	 DeKosky,	B.	J.,	Lungu,	O.	I.,	Park,	D.,	Johnson,	E.	L.,	Charab,	W.,	Chrysostomou,	C.,	Kuroda,	D.,	

Ellington,	A.	D.,	Ippolito,	G.	C.,	Gray,	J.	J.	&	Georgiou,	G.	Large-scale	sequence	and	structural	
comparisons	of	human	naive	and	antigen-experienced	antibody	repertoires.	Proc.	Natl.	Acad.	
Sci.	U.	S.	A.	113,	E2636-45	(2016).	

3.	 Glanville,	J.,	Zhai,	W.,	Berka,	J.,	Telman,	D.,	Huerta,	G.,	Mehta,	G.	R.,	Ni,	I.,	Mei,	L.,	Sundar,	P.	D.,	
Day,	G.	M.	R.,	Cox,	D.,	Rajpal,	A.,	Pons,	J.	&	Lerner,	R.	A.	Precise	determination	of	the	diversity	of	
a	combinatorial	antibody	library	gives	insight	into	the	human	immunoglobulin	repertoire.	

4.	 Karanicolas,	J.	&	Kuhlman,	B.	Computational	design	of	affinity	and	specificity	at	protein–protein	
interfaces.	Curr.	Opin.	Struct.	Biol.	19,	458–463	(2009).	

5.	 Bradbury,	A.	&	Plückthun,	A.	Reproducibility:	Standardize	antibodies	used	in	research.	Nature	
518,	27–29	(2015).	

6.	 Weiser,	M.,	Vega-Saenz	de	Miera,	E.,	Kentros,	C.,	Moreno,	H.,	Franzen,	L.,	Hillman,	D.,	Baker,	H.	
&	Rudy,	B.	Differential	expression	of	Shaw-related	K+	channels	in	the	rat	central	nervous	
system.	J.	Neurosci.	14,	949–72	(1994).	

7.	 Wojciak,	J.	M.,	Zhu,	N.,	Schuerenberg,	K.	T.,	Moreno,	K.,	Shestowsky,	W.	S.,	Hiraiwa,	M.,	
Sabbadini,	R.	&	Huxford,	T.	The	crystal	structure	of	sphingosine-1-phosphate	in	complex	with	a	
Fab	fragment	reveals	metal	bridging	of	an	antibody	and	its	antigen.	Proc.	Natl.	Acad.	Sci.	U.	S.	A.	
106,	17717–22	(2009).	

8.	 He,	K.,	Du,	X.,	Sheng,	W.,	Zhou,	X.,	Wang,	J.	&	Wang,	S.	Crystal	Structure	of	the	Fab	Fragment	of	
an	Anti-ofloxacin	Antibody	and	Exploration	of	Its	Specific	Binding.	J.	Agric.	Food	Chem.	64,	2627–
2634	(2016).	

9.	 Lippow,	S.	M.,	Wittrup,	K.	D.	&	Tidor,	B.	Computational	design	of	antibody-affinity	improvement	
beyond	in	vivo	maturation.	Nat.	Biotechnol.	25,	1171–6	(2007).	

10.	 Dunbar,	J.,	Krawczyk,	K.,	Leem,	J.,	Marks,	C.,	Nowak,	J.,	Regep,	C.,	Georges,	G.,	Kelm,	S.,	Popovic,	
B.	&	Deane,	C.	M.	SAbPred:	a	structure-based	antibody	prediction	server.	Nucleic	Acids	Res.	44,	
W474-8	(2016).	

11.	 Weitzner,	B.	D.,	Jeliazkov,	J.	R.,	Lyskov,	S.,	Marze,	N.,	Kuroda,	D.,	Frick,	R.,	Adolf-Bryfogle,	J.,	
Biswas,	N.,	Dunbrack,	R.	L.	&	Gray,	J.	J.	Modeling	and	docking	of	antibody	structures	with	
Rosetta.	Nat.	Protoc.	12,	401–416	(2017).	

12.	 Marcatili,	P.,	Olimpieri,	P.	P.,	Chailyan,	A.	&	Tramontano,	A.	Antibody	structural	modeling	with	
prediction	of	immunoglobulin	structure	(PIGS).	Nat.	Protoc.	9,	2771–2783	(2014).	

13.	 Kuhn,	M.	&	Johnson,	K.	Applied	Predictive	Modeling	[Hardcover].	(2013).	doi:10.1007/978-1-
4614-6849-3	

14.	 Baran,	D.,	Pszolla,	M.	G.,	Lapidoth,	G.	D.,	Norn,	C.,	Dym,	O.,	Unger,	T.,	Albeck,	S.,	Tyka,	M.	D.	&	
Fleishman,	S.	J.	Principles	for	computational	design	of	binding	antibodies.	Proc.	Natl.	Acad.	Sci.	
U.	S.	A.	114,	10900–10905	(2017).	

15.	 Choi,	Y.	&	Deane,	C.	M.	Predicting	antibody	complementarity	determining	region	structures	
without	classificationw.	Mol.	BioSyst.	Mol.	BioSyst	7,	3327–3334	(2011).	

16.	 Shi,	J.,	Blundell,	T.	L.	&	Mizuguchi,	K.	FUGUE:	sequence-structure	homology	recognition	using	
environment-specific	substitution	tables	and	structure-dependent	gap	penalties11Edited	by	B.	
Honig.	J.	Mol.	Biol.	310,	243–257	(2001).	

17.	 Yamashita,	K.,	Ikeda,	K.,	Amada,	K.,	Liang,	S.,	Tsuchiya,	Y.,	Nakamura,	H.,	Shirai,	H.	&	Standley,	D.	



	 65	

M.	Kotai	Antibody	Builder:	automated	high-resolution	structural	modeling	of	antibodies.	
Bioinformatics	30,	3279–3280	(2014).	

18.	 Dunbar,	J.,	Krawczyk,	K.,	Leem,	J.,	Baker,	T.,	Fuchs,	A.,	Georges,	G.,	Shi,	J.	&	Deane,	C.	M.	
SAbDab:	the	structural	antibody	database.	Nucleic	Acids	Res.	42,	D1140–D1146	(2014).	

19.	 Lefranc,	M.-P.,	Pommié,	C.,	Kaas,	Q.,	Duprat,	E.,	Bosc,	N.,	Guiraudou,	D.,	Jean,	C.,	Ruiz,	M.,	Da	
Piédade,	I.,	Rouard,	M.,	Foulquier,	E.,	Thouvenin,	V.	&	Lefranc,	G.	IMGT	unique	numbering	for	
immunoglobulin	and	T	cell	receptor	constant	domains	and	Ig	superfamily	C-like	domains.	
(2004).	doi:10.1016/j.dci.2004.07.003	

20.	 Sequences	of	proteins	of	immunological	interest	/.	(U.S.	Dept.	of	Health	and	Human	Services,	
Public	Health	Service,	National	Institutes	of	Health,	1991).	

21.	 Standard	conformations	for	the	canonical	structures	of	immunoglobulins1.	J.	Mol.	Biol.	273,	
927–948	(1997).	

22.	 North,	B.,	Lehmann,	A.	&	Dunbrack,	R.	L.	A	New	Clustering	of	Antibody	CDR	Loop	
Conformations.	J.	Mol.	Biol.	406,	228–256	(2011).	

23.	 Honegger,	A.,	Plu,	A.	&	Ckthun,	È.	Yet	Another	Numbering	Scheme	for	Immunoglobulin	Variable	
Domains:	An	Automatic	Modeling	and	Analysis	Tool.	doi:10.1006/jmbi.2001.4662	

24.	 Al-Lazikani,	B.,	Lesk,	A.	M.	&	Chothia,	C.	Standard	conformations	for	the	canonical	structures	of	
immunoglobulins	1	1Edited	by	I.	A.	Wilson.	J.	Mol.	Biol.	273,	927–948	(1997).	

25.	 Weitzner,	B.	D.,	Kuroda,	D.,	Marze,	N.,	Xu,	J.	&	Gray,	J.	J.	Blind	prediction	performance	of	
RosettaAntibody	3.0:	Grafting,	relaxation,	kinematic	loop	modeling,	and	full	CDR	optimization.	
Proteins	Struct.	Funct.	Bioinforma.	82,	1611–1623	(2014).	

26.	 Lorenzen,	S.,	Peters,	B.,	Goede,	A.,	Preissner,	R.	&	Fr??mmel,	C.	Conservation	of	cis	prolyl	bonds	
in	proteins	during	evolution.	Proteins	Struct.	Funct.	Genet.	58,	589–595	(2005).	

27.	 Exarchos,	K.	P.,	Papaloukas,	C.,	Exarchos,	T.	P.,	Troganis,	A.	N.	&	Fotiadis,	D.	I.	Prediction	of	
cis/trans	isomerization	using	feature	selection	and	support	vector	machines.	J.	Biomed.	Inform.	
42,	140–149	(2009).	

28.	 Sarkar,	P.,	Reichman,	C.,	Saleh,	T.,	Birge,	R.	B.	&	Kalodimos,	C.	G.	Proline	cis-trans	Isomerization	
Controls	Autoinhibition	of	a	Signaling	Protein.	Mol.	Cell	25,	413–426	(2007).	

29.	 Kado,	Y.,	Mizohata,	E.,	Nagatoishi,	S.,	Iijima,	M.,	Shinoda,	K.,	Miyafusa,	T.,	Nakayama,	T.,	
Yoshizumi,	T.,	Sugiyama,	A.,	Kawamura,	T.,	Lee,	Y.	H.,	Matsumura,	H.,	Doi,	H.,	Fujitani,	H.,	
Kodama,	T.,	Shibasaki,	Y.,	Tsumoto,	K.	&	Inoue,	T.	Epiregulin	recognition	mechanisms	by	anti-
epiregulin	antibody	9E5:	Structural,	functional,	and	molecular	dynamics	simulation	analyses.	J.	
Biol.	Chem.	291,	2319–2330	(2016).	

30.	 Andreotti,	A.	H.	Native	state	proline	isomerization:	An	intrinsic	molecular	switch.	Biochemistry	
42,	9515–9524	(2003).	

31.	 Jain,	P.,	Garibaldi,	J.	M.	&	Hirst,	J.	D.	Supervised	machine	learning	algorithms	for	protein	
structure	classification.	Comput.	Biol.	Chem.	33,	216–223	(2009).	

32.	 Blagus,	R.,	Lusa,	L.,	Bishop,	C.,	He,	H.,	Garcia,	E.,	Daskalaki,	S.,	Kopanas,	I.,	Avouris,	N.,	
Ramaswamy,	S.,	Ross,	K.,	Lander,	E.	et	al,	S.	SMOTE	for	high-dimensional	class-imbalanced	data.	
BMC	Bioinformatics	14,	106	(2013).	

33.	 Chawla,	N.	V.,	Bowyer,	K.	W.,	Hall,	L.	O.	&	Kegelmeyer,	W.	P.	SMOTE:	Synthetic	minority	over-
sampling	technique.	J.	Artif.	Intell.	Res.	16,	321–357	(2002).	

34.	 Adolf-Bryfogle,	J.,	Xu,	Q.,	North,	B.,	Lehmann,	A.	&	Dunbrack,	R.	L.	PyIgClassify:	a	database	of	
antibody	CDR	structural	classifications.	Nucleic	Acids	Res.	43,	D432–D438	(2015).	

	



	 66	

Curriculum Vitae 
EDUCATION	

Johns	Hopkins	University	 																																																																																																																		Dec	2017	

M.S.E.	 Chemical	&	Biomolecular	Engineering	 	
University	of	Illinois	at	Chicago	 																																																																																																					Aug	2015	

Bioinformatics		
Illinois	Institute	of	Technology	 																																																																																																				May	2013	

BS	 Biochemistry	
	
	

RESEARCH	EXPERIENCE	
Computational	protein	lab	at	Johns	Hopkins	University	 																																																05/2016	~	

current	

Principle	Investigator:	Prof.	Jeffrey	Gray	

• Graduate	student	with	research	project	to	improve	template	selection	method	for	knowledge-
based	CDR	loop	modeling	in	the	Rosetta	antibody	protocol;	Contributor	to	Rosetta	software	

• Profiled	current	Rosetta	CDR	loop	prediction	accuracy	with	metric	of	whether	the	selected	
template	belongs	to	the	correct	CDR	loop	structural	classification	clustered	by	RMSD	previously	
in	literature	with	all	current	available	human	and	mouse	antibodies	on	Sabdab.	

• Attempted	per	position	residue	frequency	profiling	method	PSSM,	various	machine	learning	
methods	and	energy	based	method	for	improving	the	accuracy	of	the	prediction,	recognizing	
the	major	difficulty	is	in	allowing	clusters	with	a	small	number	of	members	to	have	good	recall,	
while	classes	with	a	large	number	of	members	maintain	good	specificity.	

• Rewrite	python	code	to	c++	for	some	functions	linking	Rosetta	and	pymol	for	graphical	
													demonstration	of	the	protein	such	as	per	residue	energy	and	structural	information.	
	
University	of	Illinois	at	Chicago	and	University	of	Chicago	Institute	for	Genomics	and	Systems		

Biology	 																																																																																																																																	01/2015	~	

10/2015	

Research	Assistant	in	PsychEncode	Project	
Principle	Investigator:	Prof.	Chunyu	Liu,	Prof.	Elliot	Gershon	

• Performed	preprocessing	for	over	200	whole	genome	RNA	sequencing	samples	to	filter	out	
low-quality	reads	and	samples.	

• Communicated	with	wet	lab	colleagues	to	optimize	the	sample	extraction	protocol	so	that	the	
sequencing	depth	is	around	50	million	reads	and	with	good	coverage	in	intronic	and	noncoding	
regions	of	the	genome.	

• Confirmed	the	validity	of	wet	lab	protocol	for	studying	non-coding	RNA	expression	by	getting	
the	statistics	of	the	assembled	RNA	transcripts	in	terms	of	their	length,	and	distribution	of	the	
genome.



	 67	

University	of	Illinois	at	Chicago	Bioinformatics	Lab																																														03/2014	~	8/2015	

Principle	Investigator:	Prof.	Yang	Dai	
Graduate	student,	participated	in	studying	the	coupling	between	methylation	and	gene	isoform	
expression	in	cancer	

• Constructed	a	graph	model	for	selecting	out	isoforms	with	highly	correlated	splicing	
patterns	alteration	in	cancer,	the	same	model	could	be	applied	to	DNA	methylation	level	
data	as	well.	

• Added	another	layer	to	the	model	by	coupling	the	two	graphs	constructed	by	isoform	
expression	and	methylation,	and	constructed	the	coupled	heavy	subgraph	for	the	
coupled	graph	by	optimizing	the	parameters	of	the	objective	function.	Such	coupling	
leads	to	implications	of	a	global	effect	of	methylation	of	DNA	changes	alter	the	splicing	
pattern	during	tumorigenesis.	

• Applied	the	coupled	model	to	13	types	of	cancer	with	more	than	20	samples	for	each	
type	of	cancer	from	both	healthy	and	tumor	tissues	in	TCGA.	

	
BGI	China	 																																																																																																																5/2014	~	8/2014	

Intern	as	data	analyst	in	a	group	developing	capturing	circulating	tumor	cells	(CTCs)		

• Analyzed	RNAseq	raw	data	from	a	set	of	prostate	tumors	and	a	set	of	healthy	individual	
prostate	tissues	to	characterize	the	differential	expression	between	the	two	sets.	
Compared	RNAseq	bulk	analysis	tools	cufflinks,	MATs,	and	Htseq	for	possible	adoption	
to	single-cell	sequencing	analysis.	

• Generated	differential	expression	profile	of	healthy	and	prostate	tumor	samples.	
Selected	out	the	significantly	differently	expressed	genes	and	cluster	the	samples	into	
different	groups	using	the	subset	of	differentially	expressed	genes.	
	

“Muscle”	Lab	at	Illinois	Institute	of	Tech	 																																																									06/2012~05/2013		

Research	volunteer	for	a	project	designing	an	improved	exon	skipping	strategy	to	restore	the	
reading	frame	of	a	mutated	dystrophin	gene,	which	leads	to	Duchene	muscular	dystrophy.	
Principle	Investigator:	Prof.	Nick	Menhart	

• Performed	genetic	engineering,	protein	expression	and	purification,	protease	digestion	
and	circular	dichroism	profiling	on	some	variants	among	a	library	of	deletion	variants	of	
dystrophin	with	mutation	in	disease	hotspots	spanning	exons	45-46,45-47,	45-48.;	With	
findings	of	exon	deletion	45-48	results	in	the	most	stable	repairs	as	a	result	of	less	
disrupted	helicity	of	the	spliced	repeats.	

• Helped	with	assessing	neural	NO	Synthase	(nNOS)	binding	moiety	in	some	variants	
among	a	total	of	constructed	35	variants	in	the	STR1617	region,	with	each	
corresponding	to	a	bin	of	neighboring	charged	residues	substituted	by	alanine.	Studied	
how	the	charges	in	each	bin	affected	the	binding	activity	individually	or	in	combination	
using	a	bio-layer	interferometer.	


