4.6 Supporting Information

References

- (1) Vasudevan, D. and Stone, A. T. Adsorption of 4-nitrocatechol, 4-nitro-2aminophenol, and 4- nitro-1,2-phenylenediamine at the metal (hydr)oxide/water interface: Effect of metal (hydr)oxide properties. *J. Colloid Interf. Sci.* **1998**, 202, 1-19.
- (2) Morgan, J. J. Manganese in natural waters and earth's crust: Its availability to organisms. In *Metal Ions in Biological Systems*, H. Sigel, Editor. 2000, Dekker: New York. 1-34.
- (3) Murray, J. W. Surface chemistry of hydrous manganese-dioxide. *J. Colloid Interf. Sci.* **1974**, 46, 357-371.
- (4) Tonkin, J. W., Balistrieri, L. S., and Murray, J. W. Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model. *Appl. Geochem.* **2004**, 19, 29-53.
- (5) Toullec, J. Keto-enol equilibrium constant. In *The Chemistry of Enols*, Z. Rappoport, Editor. 1990, John Willey: Chichester, England. 323-398.
- (6) Wong, F. M., Keeffe, J. R., and Wu, W. M. The strength of a low-barrier hydrogen bond in water. *Tetrahedron Lett.* **2002**, 43, 3561-3564.
- (7) pK_a Value Calculated Using Advanced Chemistry Development (ACD) Software Solaris v4.67 (1994-2004) being cited by the electronic database SciFinder Scholar.
- (8) Iglesias, E. Tautomerization of 2-acetylcyclohexanone. 1. Characterization of keto-enol/enolate equilibria and reaction rates in water. *J. Org. Chem.* **2003**, 68, 2680-2688.
- (9) Iglesias, E. Keto-enol/enolate equilibria in the 2-acetylcyclopentanone system. An unusual reaction mechanism in enol nitrosation. *New J. Chem.* 2002, 26, 1352-1359.

Name	Metal Charge	Ionic Radius (nm)	Electronic Structure	BET Surface Area (m ² /g)	pH _{zpc}	Mineral Structure	Cation Exchanger?
$TiO_2(s, Rutile)^a$	4.0	0.069	[Ar]3d ⁰	3.5	6.1	chain	no
MnO ₂ (s, Birnessite)	3.78	Mn ^{IV} : 0.052 ^b Mn ^{III} : 0.070 ^b	Mn ^{IV} : [Ar]3d ³ Mn ^{III} : [Ar]3d ⁴ (high spin)	174.3	2.3 ^c	layer	yes

Table S4.2. Indirect Photometric Methods Developed for Analyzing Ionic Components from (a) Oxidation of Organic Substrates by MnO₂ or MnOOH, (b) Adsorption of Organic Substrate onto TiO₂, Using Capillary Electrophoresis

Analytes	Electrolyte	Wavelength (nm)
Oxidation Experim	ents	
malonic $acid^1$ formic $acid^2$ oxalic $acid^2$	pH 7.8 5 mM phthalate, 12.5 mM Tris, 0.25 mM TTAB	229^{1} 200^{2}
tartronic acid ¹ oxalic acid ² glyoxylic acid ² formic acid ²	pH 7.8 5 mM phthalate, 12.5 mM Tris, 0.25 mM TTAB	200
Adsorption Experim	nents	
acetylacetone	pH 10.8 10 mM benzoate, 25 mM triethylamine, 0.25 mM	229 TTAB
acetoacetatic acid	pH 7.8 5 mM phthalate, 12.5 mM Tris, 0.25 mM TTAB	209
dimethylmalonic acid	pH 7.8 5 mM phthalate, 12.5 mM Tris, 0.25 mM TTAB	229
¹ refers to the parent co	ompound, ² refers to the oxidation product.	

Structure Ketone (KH)	Predominant Enol (EH)	Enolate ion (E ⁻)	K _E	Ref.	pK _a ^{eq}	Ref.	R ₀ at pH 5.0 (μM/h)
\$ ∕~¢°	dimmer via intermolecular		$> 10^{1.28}$ (i.e. enol content > 95%)	(5, 6)	5.26	(7)	19
			$10^{-0.14}$	(8)	9.85	(8)	17
	CH ₃		10-0.40	(0)	0.05	$\langle 0 \rangle$	221
СН₃	СН	СН3	10	(9)	8.25	(9)	231

Table S4.3. Properties and MnO₂ Reactivity Comparisons Among **b**-Diketones with Ring Structures